Mass Relationships in Chemical Reactions

Chapter 3

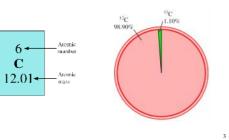
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Micro World atoms & molecules

Macro World grams

Atomic mass is the mass of an atom in atomic mass units (amu)

By definition: 1 atom ¹²C "weighs" 12 amu

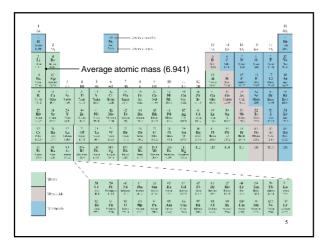

On this scale

¹H = 1.008 amu

 $^{16}O = 16.00 \text{ amu}$

2

The **average atomic mass** is the weighted average of all of the naturally occurring isotopes of the element.


Naturally occurring lithium is:

7.42% ⁶Li (6.015 amu)

92.58% ⁷Li (7.016 amu)

Average atomic mass of lithium:

$$\frac{7.42 \times 6.015 + 92.58 \times 7.016}{100} = 6.941 \text{ amu}$$

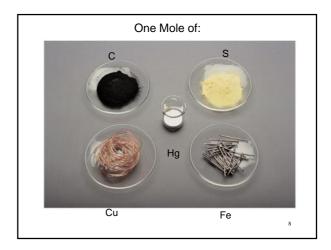
The Mole (mol): A unit to count numbers of particles

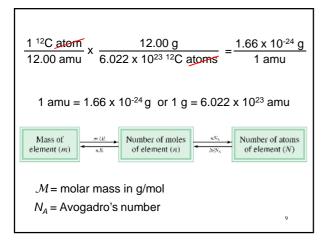
Dozen = 12

Pair = 2

The *mole (mol)* is the amount of a substance that contains as many elementary entities as there are atoms in exactly 12.00 grams of ¹²C

1 mol = N_A = 6.0221367 x 10²³


Avogadro's number (N_A)


Molar mass is the mass of 1 mole of shoes marbles atoms in grams

1 mole 12 C atoms = 6.022 x 10^{23} atoms = 12.00 g 1 12 C atom = 12.00 amu

> 1 mole 12 C atoms = 12.00 g 12 C 1 mole lithium atoms = 6.941 g of Li

For any element atomic mass (amu) = molar mass (grams)

How many atoms are in 0.551 g of potassium (K)? 1 mol K = 39.10 g K $1 \text{ mol } K = 6.022 \text{ x } 10^{23} \text{ atoms } K$ $0.551 \text{ g-K} \text{ x } \frac{1 \text{ mol-K}}{39.10 \text{ g-K}} \text{ x } \frac{6.022 \text{ x } 10^{23} \text{ atoms } K}{1 \text{ mol-K}} =$ $8.49 \text{ x } 10^{21} \text{ atoms } K$

Molecular mass (or molecular weight) is the sum of the atomic masses (in amu) in a molecule.

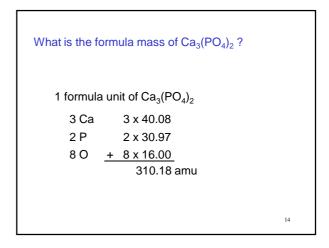
1S 32.07 amu
2O $\pm 2 \times 16.00$ amu
SO₂ $\pm 2 \times 16.00$ amu
For any molecule
molecular mass (amu) = molar mass (grams)

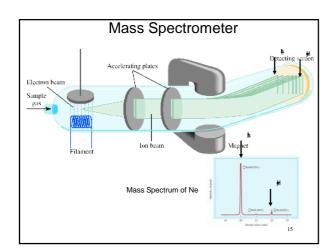
1 molecule SO₂ = 64.07 amu
1 mole SO₂ = 64.07 g SO₂

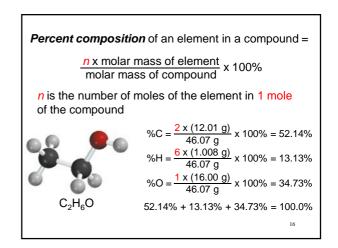
How many H atoms are in 72.5 g of C_3H_8O ?

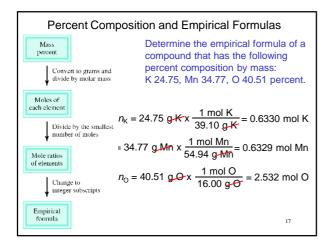
1 mol $C_3H_8O = (3 \times 12.01) + (8 \times 1.008) + 16.00$ = 60.09 g C_3H_8O 1 mol C_3H_8O molecules = 8 mol H atoms
1 mol H = 6.022 x 10²³ atoms H

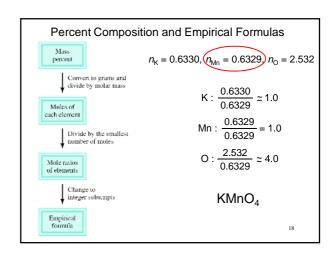
72.5 g C_3H_8O x $\frac{1 \text{ mol } C_3H_8O}{60.09 \text{ g } C_3H_8O}$ x $\frac{8 \text{ mol H atoms}}{1 \text{ mol } C_3H_8O}$ x $\frac{6.022 \times 10^{23} \text{ H atoms}}{1 \text{ mol H atoms}} = 5.82 \times 10^{24} \text{ atoms H}$

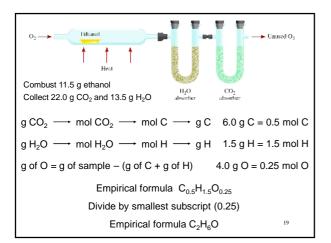

Formula mass is the sum of the atomic masses (in amu) in a formula unit of an ionic compound.

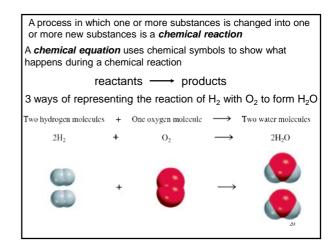

1Na 22.99 amu
1Cl + 35.45 amu
NaCl 58.44 amu


For any ionic compound
formula mass (amu) = molar mass (grams)


1 formula unit NaCl = 58.44 amu 1 mole NaCl = 58.44 g NaCl


13





How to "Read" Chemical Equations

 $2 \text{ Mg} + \text{O}_2 \longrightarrow 2 \text{ MgO}$

2 atoms Mg + 1 molecule O₂ makes 2 formula units MgO 2 moles Mg + 1 mole O₂ makes 2 moles MgO 48.6 grams Mg + 32.0 grams O₂ makes 80.6 g MgO

NOT

2 grams Mg + 1 gram O₂ makes 2 g MgO

21

Balancing Chemical Equations

 Write the correct formula(s) for the reactants on the left side and the correct formula(s) for the product(s) on the right side of the equation.

Ethane reacts with oxygen to form carbon dioxide and water

$$C_2H_6 + O_2 \longrightarrow CO_2 + H_2O$$

 Change the numbers in front of the formulas (coefficients) to make the number of atoms of each element the same on both sides of the equation. Do not change the subscripts.

$$2C_2H_6$$
 NOT C_4H_{12}

22

Balancing Chemical Equations

3. Start by balancing those elements that appear in only one reactant and one product.

C₂H₆ + O₂
$$\longrightarrow$$
 CO₂ + H₂O start with C or H but not O

2 carbon on left on right multiply CO₂ by 2

C₂H₆ + O₂ \longrightarrow 2CO₂ + H₂O

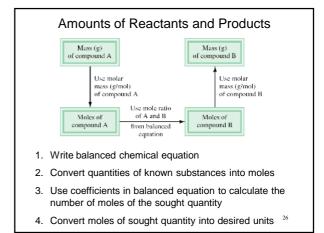
6 hydrogen on left on right multiply H₂O by 3

C₂H₆ + O₂ \longrightarrow 2CO₂ + 3H₂O

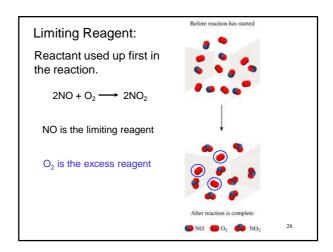
23

Balancing Chemical Equations

 Balance those elements that appear in two or more reactants or products.


$$C_{2}H_{6} + O_{2} \longrightarrow 2CO_{2} + 3H_{2}O \qquad \text{multiply } O_{2} \text{ by } \frac{7}{2}$$

$$2 \text{ oxygen} \qquad 4 \text{ oxygen} + 3 \text{ oxygen} = 7 \text{ oxygen}$$
on left $(2x2)$ $(3x1)$ on right
$$C_{2}H_{6} + \frac{7}{2}O_{2} \longrightarrow 2CO_{2} + 3H_{2}O \qquad \text{remove fraction multiply both sides by 2}$$


$$2C_{2}H_{6} + 7O_{2} \longrightarrow 4CO_{2} + 6H_{2}O$$

Balancing Chemical Equations

Check to make sure that you have the same number of each type of atom on both sides of the equation.

Methanol burns in air according to the equation $2CH_3OH + 3O_2 \longrightarrow 2CO_2 + 4H_2O$ If 209 g of methanol are used up in the combustion, what mass of water is produced? grams $CH_3OH \longrightarrow moles \ CH_3OH \longrightarrow moles \ H_2O \longrightarrow grams \ H_2O$ $\frac{molar\ mass}{CH_3OH} \quad \frac{coefficients}{chemical\ equation} \quad \frac{molar\ mass}{H_2O}$ $\frac{209\ g\ CH_3OH}{200\ H_3OH} \times \frac{1\ mol\ CH_3OH}{32.0\ g\ CH_3OH} \times \frac{4\ mol\ H_2O}{2\ mol\ CH_3OH} \times \frac{18.0\ g\ H_2O}{1\ mol\ H_2O} =$ $\frac{235\ g\ H_2O}{200\ g\ CH_3OH} \times \frac{18.0\ g\ H_2O}{1\ mol\ H_2O} =$

In one process, 124 g of Al are reacted with 601 g of Fe₂O₃ $2\text{Al} + \text{Fe}_2\text{O}_3 \longrightarrow \text{Al}_2\text{O}_3 + 2\text{Fe}$ $\text{Calculate the mass of Al}_2\text{O}_3 \text{ formed.}$ $\text{g Al} \longrightarrow \text{mol Al} \longrightarrow \text{mol Fe}_2\text{O}_3 \text{ needed} \longrightarrow \text{g Fe}_2\text{O}_3 \text{ needed}$ OR $\text{g Fe}_2\text{O}_3 \longrightarrow \text{mol Fe}_2\text{O}_3 \longrightarrow \text{mol Al needed} \longrightarrow \text{g Al needed}$ $124 \text{ g Al} \times \frac{1 \text{ mol Fe}_2\text{O}_3}{2 \text{ Tol Al}} \times \frac{1 \text{ mol Fe}_2\text{O}_3}{2 \text{ mol Al}} \times \frac{160. \text{ g Fe}_2\text{O}_3}{1 \text{ mol Fe}_2\text{O}_3} = 367 \text{ g Fe}_2\text{O}_3$ $\text{Start with 124 g Al} \longrightarrow \text{need 367 g Fe}_2\text{O}_3$ $\text{Have more Fe}_2\text{O}_3 \text{ (601 g) so Al is limiting reagent}$

Use limiting reagent (Al) to calculate amount of product that can be formed. $g \, Al \, \longrightarrow \, \text{mol Al} \, \longrightarrow \, \text{mol Al}_2O_3 \, \longrightarrow \, g \, Al_2O_3$ $2Al + Fe_2O_3 \, \longrightarrow \, Al_2O_3 + 2Fe$ $124 \, g \, Al \, \times \, \frac{1 \, \text{mol Al}_2O_3}{27.0 \, g \, Al} \, \times \, \frac{1 \, \text{mol Al}_2O_3}{2 \, \text{mol Al}_2O_3} \, \times \, \frac{102. \, g \, Al_2O_3}{1 \, \text{mol Al}_2O_3} \, = \, 234 \, g \, Al_2O_3$ At this point, all the Al is consumed and Fe_2O_3 remains in excess.

Reaction Yield

Theoretical Yield is the amount of product that would result if all the limiting reagent reacted.

Actual Yield is the amount of product actually obtained from a reaction.

% Yield =
$$\frac{\text{Actual Yield}}{\text{Theoretical Yield}} \times 100\%$$

31

Chemistry In Action: Chemical Fertilizers

Plants need: N, P, K, Ca, S, & Mg

 $3H_2(g) + N_2(g) \longrightarrow 2NH_3(g)$

 $NH_3(aq) + HNO_3(aq) \longrightarrow NH_4NO_3(aq)$

fluorapatite $2\text{Ca}_{5}(\text{PO}_{4})_{3}\text{F (s)} + 7\text{H}_{2}\text{SO}_{4} \ (aq) \xrightarrow{} \\ 3\text{Ca}(\text{H}_{2}\text{PO}_{4})_{2} \ (aq) + 7\text{CaSO}_{4} \ (aq) + 2\text{HF (g)}$

32