

TABLE 5.1 Some Suk	Found as Gases at 1 atm and $25^{\circ} \mathrm{C}$
Elements	Compounds
H_{2} (molecular hydrogen)	HF (hydrogen fluoride)
N_{2} (molecular nitrogen)	HCl (hydrogen chloride)
O, (molecular oxygen)	HBr (hydrogen bromide)
O_{5} (ozone)	HL (hydrogen iodide)
F_{2} (mblecular fluorine)	(0) (carhon manoxide)
Cl_{2} (molecular chlorine)	CO_{2} (carbon dioxide)
He (helium)	NH_{3} (ammonia)
Ne (neon)	NO (nitric oxide)
Ar (argon)	NO_{2} (nitrogen dioxide)
Kr (krypton)	$\mathrm{N}_{2} \mathrm{O}$ (nitrous oxide)
Xe (xenon)	SO_{2} (sulfur dioxide)
Rn (mdon)	$\mathrm{H}_{2} \mathrm{~S}$ (hydrogen sulfide)
	HCN (hydrogen cyanide)*
	3

Apparatus for Studying the Relationship Between Pressure and Volume of a Gas

A sample of chlorine gas occupies a volume of 946 mL at a pressure of 726 mmHg . What is the pressure of the gas (in mmHg) if the volume is reduced at constant temperature to 154 mL ?

$$
\begin{gathered}
P \times V=\text { constant } \\
P_{1} \times V_{1}=P_{2} \times V_{2} \\
P_{1}=726 \mathrm{mmHg} \quad P_{2}=? \\
V_{1}=946 \mathrm{~mL} \quad V_{2}=154 \mathrm{~mL} \\
P_{2}=\frac{P_{1} \times V_{1}}{V_{2}}=\frac{726 \mathrm{mmHg} \times 946 \mathrm{~m} \hbar}{154 \mathrm{mt}}=4460 \mathrm{mmHg}
\end{gathered}
$$

A sample of carbon monoxide gas occupies 3.20 L at $125^{\circ} \mathrm{C}$.
At what temperature will the gas occupy a volume of 1.54 L if the pressure remains constant?

$$
\begin{gathered}
V_{1} / T_{1}=V_{2} / T_{2} \\
V_{1}=3.20 \mathrm{~L} \quad V_{2}=1.54 \mathrm{~L} \\
T_{1}=398.15 \mathrm{~K} \quad T_{2}=? \\
T_{1}=125\left({ }^{\circ} \mathrm{C}\right)+273.15(\mathrm{~K})=398.15 \mathrm{~K} \\
T_{2}=\frac{V_{2} \times T_{1}}{V_{1}}=\frac{1.54 \mathrm{~L} \times 398.15 \mathrm{~K}}{3.20 \mathrm{~L}}=192 \mathrm{~K}
\end{gathered}
$$

Ammonia burns in oxygen to form nitric oxide (NO) and water vapor. How many volumes of NO are obtained from one volume of ammonia at the same temperature and pressure?

$$
\begin{gathered}
4 \mathrm{NH}_{3}+5 \mathrm{O}_{2} \longrightarrow 4 \mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O} \\
1 \text { mole } \mathrm{NH}_{3} \longrightarrow 1 \text { mole } \mathrm{NO} \\
\text { At constant } T \text { and } P \\
1 \text { volume } \mathrm{NH}_{3} \longrightarrow 1 \text { volume } \mathrm{NO}
\end{gathered}
$$

Ideal Gas Equation

Boyle's law: $\mathrm{P} \alpha \frac{1}{V}$ (at constant n and T)
Charles'law: $V \alpha T$ (at constant n and P)
Avogadro's law: $V \alpha n$ (at constant P and T)
$V \propto \frac{n T}{P}$
$V=$ constant $\mathrm{x} \frac{n T}{P}=R \frac{n T}{P} \quad R$ is the gas constant

$$
P V=n R T
$$

What is the volume (in liters) occupied by 49.8 g of HCl at STP?

$$
\begin{aligned}
& T=0^{\circ} \mathrm{C}=273.15 \mathrm{~K} \\
& P V=n R T \\
& V=\frac{n R T}{P} P=1 \mathrm{~atm} \\
& V=\frac{1.37 \text { mot } \times 0.0821 \frac{\mathrm{~L} \cdot 2 \mathrm{~atm}}{\mathrm{mot} \cdot \mathrm{~K}} \times 273.15 \mathrm{~K}}{1 \mathrm{~K}} \times \frac{1 \mathrm{~mol} \mathrm{HCl}}{36.45 \mathrm{~g} \mathrm{HCl}}=1.37 \mathrm{~mol} \\
& 1 \mathrm{~atm}
\end{aligned}
$$

Density (d) Calculations

$d=\frac{m}{V}=\frac{P \mathcal{M}}{R T}$
m is the mass of the gas in g \mathcal{M} is the molar mass of the gas

Molar Mass (\mathcal{M}) of a Gaseous Substance

$\mathcal{M}=\frac{d R T}{P} \quad d$ is the density of the gas in g / L

The conditions $0^{\circ} \mathrm{C}$ and 1 atm are called standard temperature and pressure (STP).

Experiments show that at STP, 1 mole of an ideal gas occupies 22.414 L .

$$
P V=n R T
$$

$R=\frac{P V}{n T}=\frac{(1 \mathrm{~atm})(22.414 \mathrm{~L})}{(1 \mathrm{~mol})(273.15 \mathrm{~K})}$

$$
R=0.082057 \mathrm{~L} \cdot \mathrm{~atm} /(\mathrm{mol} \cdot \mathrm{~K})
$$

Argon is an inert gas used in lightbulbs to retard the vaporization of the filament. A certain lightbulb containing argon at 1.20 atm and $18^{\circ} \mathrm{C}$ is heated to $85^{\circ} \mathrm{C}$ at constant volume. What is the final pressure of argon in the lightbulb (in atm)?

$$
P V=n R T \quad n, V \text { and } R \text { are constant }
$$

$\frac{n R}{V}=\frac{P}{T}=$ constant
$P_{1}=1.20 \mathrm{~atm} \quad P_{2}=$?
$T_{1}=291 \mathrm{~K} \quad T_{2}=358 \mathrm{~K}$
$\frac{P_{1}}{T_{1}}=\frac{P_{2}}{T_{2}}$
$P_{2}=P_{1} \times \frac{T_{2}}{T_{1}}=1.20 \mathrm{~atm} \times \frac{358 \mathrm{~K}}{291 \not K}=1.48 \mathrm{~atm}$

A 2.10-L vessel contains 4.65 g of a gas at 1.00 atm and 27.0
${ }^{\circ} \mathrm{C}$. What is the molar mass of the gas?

$$
\begin{aligned}
& \mathcal{M}=\frac{d R T}{P} \quad d=\frac{m}{V}=\frac{4.65 \mathrm{~g}}{2.10 \mathrm{~L}}=2.21 \frac{\mathrm{~g}}{\mathrm{~L}} \\
& \mathcal{M}=\frac{2.21 \frac{\mathrm{~g}}{\mathrm{~K}} \times 0.0821 \frac{\mathrm{~K} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathbb{K}} \times 300.15 \mathrm{~K}}{1 \mathrm{atfor}} \\
& \mathcal{M}=54.5 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

Consider a case in which two gases, A and B, are in a container of volume V .

$$
\begin{array}{ll}
P_{\mathrm{A}}=\frac{n_{A} \mathrm{RT}}{V} & n_{\mathrm{A}} \text { is the number of moles of } \mathrm{A} \\
P_{\mathrm{B}}=\frac{n_{\mathrm{B}} \mathrm{RT}}{V} & n_{\mathrm{B}} \text { is the number of moles of } \mathrm{B} \\
P_{\mathrm{T}}=P_{\mathrm{A}}+P_{\mathrm{B}} & X_{\mathrm{A}}=\frac{n_{\mathrm{A}}}{n_{\mathrm{A}}+n_{\mathrm{B}}} \quad X_{\mathrm{B}}=\frac{n_{\mathrm{B}}}{n_{\mathrm{A}}+n_{\mathrm{B}}} \\
P_{\mathrm{A}}=X_{\mathrm{A}} P_{\mathrm{T}} & P_{\mathrm{B}}=X_{\mathrm{B}} P_{\mathrm{T}}
\end{array}
$$

$$
P_{i}=X_{i} P_{\mathrm{T}} \quad \text { mole fraction }\left(\boldsymbol{X}_{i}\right)=\frac{n_{i}}{n_{T}}
$$

A sample of natural gas contains 8.24 moles of $\mathrm{CH}_{4}, 0.421$ moles of $\mathrm{C}_{2} \mathrm{H}_{6}$, and 0.116 moles of $\mathrm{C}_{3} \mathrm{H}_{8}$. If the total pressure of the gases is 1.37 atm, what is the partial pressure of propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$?

$$
\begin{aligned}
& P_{i}=X_{i} P_{\mathrm{T}} \quad P_{\mathrm{T}}=1.37 \mathrm{~atm} \\
& X_{\text {propane }}=\frac{0.116}{8.24+0.421+0.116}=0.0132 \\
& P_{\text {propane }}=0.0132 \times 1.37 \mathrm{~atm}=0.0181 \mathrm{~atm}
\end{aligned}
$$

Vapor of Water and Temperature	TABLE 5.3 Preasure of Water Vaper at Various Temperatures	
$800-\square$	Tempersture 'cㄷ	
760 ----------------->		. 58
600	$\begin{aligned} & 2 \\ & 0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3.2 \\ & \hline \end{aligned}$
(bic 600	-	12,7\%
=	20	12.5.
E $400-$	38	23.76 31.82
\pm	23	2.16
\checkmark,	415	55.3)
200 - !	$\begin{aligned} & 4 \\ & 30 \end{aligned}$	1.88 9.51
-	ss	118.14
1111	∞	1-9.3it
$\begin{array}{llllll}0 & 20 & 40 & 60 & 80 & 100\end{array}$	6	187.9 2×3.
$t\left({ }^{\circ} \mathrm{C}\right)$	7	28.1
	8	585.1
	so	525.76
	$\%$	64, ${ }^{\text {a }}$
	. ω	753.09

Kinetic theory of gases and ...

- Avogadro's Law
$P \alpha$ collision rate with wall
Collision rate α number density
Number density αn
$P \alpha n$
- Dalton's Law of Partial Pressures

Molecules do not attract or repel one another
P exerted by one type of molecule is unaffected by the presence of another gas
$P_{\text {total }}=\Sigma P_{\mathrm{i}}$

Kinetic Molecular Theory of Gases

1. A gas is composed of molecules that are separated from each other by distances far greater than their own dimensions. The molecules can be considered to be points; that is, they possess mass but have negligible volume.
2. Gas molecules are in constant motion in random directions, and they frequently collide with one another. Collisions among molecules are perfectly elastic.
3. Gas molecules exert neither attractive nor repulsive forces on one another.
4. The average kinetic energy of the molecules is proportional to the temperature of the gas in kelvins. Any two gases at the same temperature will have the same average kinetic energy

$$
\overline{\mathrm{KE}}=1 / 2 m \overline{u^{2}}
$$

Kinetic theory of gases and ...

- Compressibility of Gases
- Boyle's Law
$P \alpha$ collision rate with wall
Collision rate α number density
Number density $\alpha 1 / V$
$P \propto 1 / V$
- Charles' Law
$P \alpha$ collision rate with wall
Collision rate α average kinetic energy of gas molecules
Average kinetic energy αT
$P \propto T$
\qquad

Gas effusion is the is the process by which gas under pressure escapes from one compartment of a container to another by passing through a small opening.

$$
\frac{r_{1}}{r_{2}}=\frac{t_{2}}{t_{1}}=\sqrt{\frac{\mathcal{M}_{2}}{\mathcal{M}_{1}}}
$$

Nickel forms a gaseous compound of the formula $\mathrm{Ni}(\mathrm{CO})_{\times}$What is the value of x given that under the same conditions methane $\left(\mathrm{CH}_{4}\right)$ effuses 3.3 times faster than the compound?

$$
\begin{array}{ll}
\mathrm{r}_{1}=3.3 \times \mathrm{r}_{2} & \mathcal{M}_{2}=\left(\frac{r_{1}}{r_{2}}\right)^{2} \times \mathcal{M}_{1}=(3.3)^{2} \times 16=174.2 \\
\mathcal{M}_{1}=16 \mathrm{~g} / \mathrm{mol} & 58.7+\times \cdot 28=174.2 \quad \times=4.1 \sim 4
\end{array}
$$

Gas diffusion is the gradual mixing of molecules of one gas with molecules of another by virtue of their kinetic properties.

