







A photon has a frequency of 6.0 x 10<sup>4</sup> Hz. Convert this frequency into wavelength (nm). Does this frequency fall in the visible region?  $\lambda \times v = c$   $\lambda = c/v$   $\lambda = 3.00 \times 10^8 \text{ m/s / 6.0 x } 10^4 \text{ Hz}$   $\lambda = 5.0 \times 10^3 \text{ m}$   $\lambda = 5.0 \times 10^{12} \text{ nm}$ Radio waves  $\lambda = 5.0 \times 10^{12} \text{ nm}$ 

## Mystery #1, "Heated Solids Problem" Solved by Planck in 1900 When solids are heated, they emit electromagnetic radiation over a wide range of wavelengths. Radiant energy emitted by an object at a certain temperature depends on its wavelength. Energy (light) is emitted or absorbed in discrete units (quantum). $E = h \times v$ Planck's constant (h) $h = 6.63 \times 10^{-34} \text{ J-s}$

Mystery #2, "Photoelectric Effect Present Solved by Einstein in 1905

Light has both:
1. wave nature
2. particle nature

Photon is a "particle" of light

hv = KE + W

KE = hv - W

where W is the work function and depends how strongly electrons are held in the metal

When copper is bombarded with high-energy electrons, X rays are emitted. Calculate the energy (in joules) associated with the photons if the wavelength of the X rays is 0.154 nm.  $E = h \times v$   $E = h \times c / \lambda$   $E = 6.63 \times 10^{-34} \text{ (J-s)} \times 3.00 \times 10^{-8} \text{ (m/s)} / 0.154 \times 10^{-9} \text{ (m)}$   $E = 1.29 \times 10^{-15} \text{ J}$ 













Calculate the wavelength (in nm) of a photon emitted by a hydrogen atom when its electron drops from the n = 5 state to the n = 3 state.

$$E_{\text{photon}} = \Delta E = R_{\text{H}} \left( \frac{1}{n_i^2} - \frac{1}{n_f^2} \right)$$

 $E_{\text{photon}} = 2.18 \text{ x } 10^{-18} \text{ J x } (1/25 - 1/9)$ 

 $E_{\text{photon}} = \Delta E = -1.55 \times 10^{-19} \text{ J}$ 

 $E_{\text{photon}} = h \times c / \lambda$ 

 $\lambda = h \times c / E_{photon}$ 

 $\lambda = 6.63 \times 10^{-34} \text{ (Jbs)} \times 3.00 \times 10^8 \text{ (m/s)}/1.55 \times 10^{-19}\text{J}$ 

 $\lambda = 1280 \text{ nm}$ 

15

Why is e-energy quantized?

De Broglie (1924) reasoned that e<sup>-</sup> is both particle and wave.

$$2\pi r = n\lambda$$
  $\lambda = \frac{h}{mu}$ 

u = velocity of e-

m = mass of e



What is the de Broglie wavelength (in nm) associated with a 2.5 g Ping-Pong ball traveling at 15.6 m/s?

 $\lambda = h/mu$  h in J·s m in kg u in (m/s)

 $\lambda = 6.63 \text{ x } 10^{-34} \text{ / } (2.5 \text{ x } 10^{-3} \text{ x } 15.6)$ 

 $\lambda = 1.7 \text{ x } 10^{-32} \text{ m} = 1.7 \text{ x } 10^{-23} \text{ nm}$ 

17





## Schrodinger Wave Equation In 1926 Schrodinger wrote an equation that described both the particle and wave nature of the eWave function (\$\psi\$) describes: 1. energy of e with a given \$\psi\$ 2. probability of finding e in a volume of space Schrodinger's equation can only be solved exactly for the hydrogen atom. Must approximate its

solution for multi-electron systems.





















| <b>FABLE</b> | 7.2 | Relation Between Qua       | Quantum Numbers and Atomic Orbitals |                                     |  |  |  |
|--------------|-----|----------------------------|-------------------------------------|-------------------------------------|--|--|--|
| n            | l   | $m_{\ell}$                 | Number of Orbitals                  | Atomic<br>Orbital Designation       |  |  |  |
| 1            | 0   | 0                          | 1                                   | 1s                                  |  |  |  |
| 2            | 0   | 0                          | 1                                   | 2s                                  |  |  |  |
|              | 1   | -1, 0, 1                   | 3                                   | $2\rho_x$ , $2\rho_y$ , $2\rho_z$   |  |  |  |
| 3            | 0   | 0                          | 1                                   | 3s                                  |  |  |  |
|              | 1   | -1, 0, 1                   | 3                                   | $3\rho_x$ , $3\rho_y$ , $3\rho_z$   |  |  |  |
|              | 2   | -2, $-1$ , $0$ , $1$ , $2$ | 5                                   | $3d_{xy}$ , $3d_{yz}$ , $3d_{xz}$ , |  |  |  |
|              |     |                            |                                     | $3d_{z^2-z^2}$ , $3d_{z^2}$         |  |  |  |
|              | :   | :                          |                                     |                                     |  |  |  |
|              |     |                            |                                     |                                     |  |  |  |





















| Atomic<br>Number | Symbol | Electron<br>Configuration | Atomic<br>Number | Symbol | Electron<br>Configuration                            | Atomic<br>Number | Symbol | Electron<br>Configuration                                |
|------------------|--------|---------------------------|------------------|--------|------------------------------------------------------|------------------|--------|----------------------------------------------------------|
| 1                | H      | 181                       | 38               | Sr     | [Kr]5x <sup>3</sup>                                  | 75               | Re     | $[Xe]6x^24f^{-2}5d^5$                                    |
| 2                | Пе     | $1a^2$                    | 39               | Y      | [Kr]5s <sup>2</sup> 4d                               | 76               | Os     | $[Xe]6s^24f^4 \cdot 5d^6$                                |
| 3                | Li     | He 2s                     | 40               | Li     | [Kr]5s24a2                                           | 77               | li     | Xe 6s <sup>2</sup> 4f <sup>1,4</sup> 5d <sup>2</sup>     |
|                  | To -c  | [11-15-5                  | 4.1              | KIIs.  | [20] 50-1.44                                         | 70               | Th-    | [Valenty/icos                                            |
| 5                | В      | $[11e]2s^{2}2p^{4}$       | 42               | Mo     | [Kr]5s 4d                                            | 79               | Au     | [Xe]6s <sup>1</sup> 4f <sup>17</sup> 5d <sup>10</sup>    |
| 6                | C      | $ \text{He} 2s^{2}2p^{2}$ | 43               | Te     | [Kr]5s <sup>2</sup> 4d <sup>2</sup>                  | 80               | Hg     | [Xe]6s <sup>2</sup> 4f <sup>134</sup> 5d <sup>10</sup>   |
| 7                | N      | $[He]2s^{2}2p^{3}$        | 44               | Ru     | [Kr]5x:4d <sup>3</sup>                               | 81               | TI     | $[Xe]6r^24f^{14}5d^{16}6y$                               |
| S                | 0      | $[He]2s^{2}2p^{4}$        | 45               | Rh     | [Kr]5s 4d*                                           | 82               | Pb     | [Xe]6v <sup>3</sup> 4f <sup>H</sup> 5d <sup>G</sup> 6g   |
| 9                | F      | $ \text{He} 2s^{2}2p^{3}$ | 46               | Pd     | [Kr]4a <sup>10</sup>                                 | 83               | Bi     | Xe  6s <sup>2</sup> 4y <sup>14</sup> 5d <sup>10</sup> 6p |
| 10               | Ne     | $[He]2s^{2}2p^{0}$        | 47               | Ag     | [Kr]5x:4d <sup>10</sup>                              | 84               | Po     | $[Xe]6r^24f^{14}5d^{19}6r$                               |
| 11               | Na     | [Ne]3s                    | 48               | Cil    | $[Kr]5s^24d^{16}$                                    | 8.5              | At     | [Xe]6v <sup>3</sup> 4/ <sup>11</sup> 5d <sup>19</sup> 6y |
| 12               | Mg     | [NG]36 <sup>2</sup>       | 19               | Lii    | [Kr]5s*4d**5p*                                       | 86               | Rit    | [Ac [to*4] "Da"by                                        |
| 13               | Al     | $[Ne]3s^23p^4$            | 50               | So     | $[Kr]5s^24\delta^{12}5p^2$                           | 87               | Fc     | [Rn]7s <sup>1</sup>                                      |
| 14               | Si     | $[Ne]3s^{2}3p^{3}$        | 51               | āb     | $[Kr]5s^24d^{10}5p^2$                                | 88               | Ra     | [Rn]7s2                                                  |
| 15               | P      | $ Ne 3s^23p^3$            | 52               | Te     | [Kr]5x <sup>2</sup> 4a <sup>10</sup> 5p <sup>2</sup> | 89               | Ac     | $[Rn]7s^26d^4$                                           |
| 16               | S      | $[Ne]3s^23p^4$            | 53               | I      | [Kr]5s*4e**5p*                                       | 90               | Th     | $[Rn]7s^26d^2$                                           |
| 17               | CL     | $[Ne]3s^23p^5$            | 54               | Xe     | $[Kr]5s^24d^{10}5p^6$                                | 91               | Pa.    | $[Rn]7s^25/^26d^4$                                       |
| 18               | Ar     | $ No 3a^23p^6$            | 35               | Cs     | [Xe]6s <sup>1</sup>                                  | 92               | U      | $[Rn]7s^25/^26e^{f}$                                     |
| 19               | K      | [Arl4s]                   | 56               | Во     | [Xe]6s2                                              | 93               | No     | $[Rn]7s^25f^26d^4$                                       |

