

Maxwell (1873), proposed that visible light consists of electromagnetic waves.

Electromagnetic

 radiation is the emission and transmission of energy in the form of electromagnetic waves.Speed of light (c) in vacuum $=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$
All electromagnetic radiation $\lambda \times v=c$ 3

A photon has a frequency of $6.0 \times 10^{4} \mathrm{~Hz}$. Convert this frequency into wavelength (nm). Does this frequency fall in the visible region?

Properties of Waves

Wavelength (λ) is the distance between identical points on successive waves.
Amplitude is the vertical distance from the midline of a wave to the peak or trough.
Frequency (v) is the number of waves that pass through a particular point in 1 second ($\mathrm{Hz}=1 \mathrm{cycle} / \mathrm{s}$).

The speed (u) of the wave $=\lambda \times v$

Mystery \#1, "Heated Solids Problem" Solved by Planck in 1900

When solids are heated, they emit electromagnetic radiation over a wide range of wavelengths.

Radiant energy emitted by an object at a certain temperature depends on its wavelength.

Energy (light) is emitted or absorbed in discrete units (quantum).

$E=h \times v$
Planck's constant (h)
$h=6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$

Mystery \#2, "Photoelectric Effect
Solved by Einstein in 1905
Light has both:

1. wave nature
2. particle nature

Photon is a "particle" of light

$$
\begin{aligned}
& h v=\mathrm{KE}+W \\
& \mathrm{KE}=h v-W
\end{aligned}
$$

where W is the work function and depends how strongly electrons are held in the metal

Bohr's Model of the Atom (1913)

1. e^{-}can only have specific (quantized) energy values
2. light is emitted as e^{-} moves from one energy level to a lower energy level

$$
E_{n}=-R_{\mathrm{H}}\left(\frac{1}{n^{2}}\right)
$$

n (principal quantum number) $=1,2,3, \ldots$
$R_{\mathrm{H}}($ Rydberg constant $)=2.18 \times 10^{-18} \mathrm{~J}$

Calculate the wavelength (in nm) of a photon emitted by a hydrogen atom when its electron drops from the $n=5$ state to the $n=3$ state.

$$
\begin{aligned}
E_{\text {photon }} & =\Delta E=R_{\mathrm{H}}\left(\frac{1}{n_{i}^{2}}-\frac{1}{n_{f}^{2}}\right) \\
E_{\text {photon }} & =2.18 \times 10^{-18} \mathrm{~J} \times(1 / 25-1 / 9) \\
E_{\text {photon }} & =\Delta E=-1.55 \times 10^{-19} \mathrm{~J} \\
E_{\text {photon }} & =h \times \mathrm{C} / \lambda \\
\lambda & =h \times c / E_{\text {photon }} \\
\lambda & =6.63 \times 10^{-34}(\mathrm{~J} \cdot \mathrm{~s}) \times 3.00 \times 10^{8}(\mathrm{~m} / \mathrm{s}) / 1.55 \times 10^{-19} \varnothing \gamma \\
\lambda & =1280 \mathrm{~nm}
\end{aligned}
$$

What is the de Broglie wavelength (in nm) associated with a 2.5 g Ping-Pong ball traveling at $15.6 \mathrm{~m} / \mathrm{s}$?

$$
\begin{aligned}
& \lambda=h / m u \quad h \text { in J.s } \quad m \text { in } \mathrm{kg} \quad u \text { in }(\mathrm{m} / \mathrm{s}) \\
& \lambda=6.63 \times 10^{-34} /\left(2.5 \times 10^{-3} \times 15.6\right) \\
& \lambda=1.7 \times 10^{-32} \mathrm{~m}=1.7 \times 10^{-23} \mathrm{~nm}
\end{aligned}
$$

Chemistry in Action: Electron Microscopy

$$
\lambda_{\mathrm{e}}=0.004 \mathrm{~nm}
$$

Electron micrograph of a normal red blood cell and a sickled red blood cell from the same person

STM image of iron atoms on copper surface

Schrodinger Wave Equation

ψ is a function of four numbers called quantum numbers $\left(n, I, m_{l}, m_{s}\right)$
principal quantum number n
$n=1,2,3,4, \ldots$.
distance of e^{-}from the nucleus

$3 s$

Schrodinger Wave Equation

In 1926 Schrodinger wrote an equation that described both the particle and wave nature of the e^{-} Wave function (ψ) describes:

1. energy of e^{-}with a given ψ
2. probability of finding e^{-}in a volume of space

Schrodinger's equation can only be solved exactly for the hydrogen atom. Must approximate its solution for multi-electron systems.

Schrodinger Wave Equation quantum numbers: $\left(n, l, m_{l}, m_{s}\right)$
angular momentum quantum number /
for a given value of $n, I=0,1,2,3, \ldots n-1$

$$
\begin{array}{cll}
n=1, l=0 & I=0 & s \text { orbital } \\
n=2, l=0 \text { or } 1 & I=1 & p \text { orbital } \\
n=3, l=0,1, \text { or } 2 & I=2 & d \text { orbital } \\
l=3 & f \text { orbital }
\end{array}
$$

Shape of the "volume" of space that the e^{-}occupies

$$
\begin{aligned}
& \text { Schrodinger Wave Equation } \\
& \text { quantum numbers: }\left(n, l, m_{l}, m_{\mathrm{s}}\right) \\
& \text { magnetic quantum number } m_{l} \\
& \text { for a given value of } I \\
& m_{l}=-I, \ldots, 0, \ldots+l \\
& \text { if } I=1 \text { (p orbital), } m_{l}=-1,0, \text { or } 1 \\
& \text { if } I=2 \text { (d orbital), } m_{l}=-2,-1,0,1 \text {, or } 2
\end{aligned}
$$

orientation of the orbital in space

Schrodinger Wave Equation quantum numbers: $\left(n, l, m_{l}, m_{s}\right)$

Existence (and energy) of electron in atom is described by its unique wave function ψ
Pauli exclusion principle - no two electrons in an atom can have the same four quantum numbers.

TABLE 7.2		Relation Between Quantum Numbers and Atomic Orbitals		
n	ℓ	m_{ℓ}	Number of Orbitals	Atomic Orbital Designations
1	0	0	1	$1 s$
2	0	0	1	2 s
	1	$-1,0,1$	3	$2 p_{x}, 2 p_{v}, 2 p_{z}$
3	0	0	1	3 s
	1	-1, 0, 1	3	$3 p_{0}, 3 p_{v}, 3 p_{i}$
	2	-2. $-1,0,1.2$	5	$\begin{gathered} 3 d_{x,}, 3 d_{y y}, 3 d_{x z} \\ 3 d_{z^{2}} \quad 2,3 d_{2} \end{gathered}$
:	:	:	.	
	-	.	.	.
				31

How many $2 p$ orbitals are there in an atom?

How many electrons can be placed in the $3 d$ subshell?

$$
\begin{array}{cl}
n=3 & \text { If } I=2, \text { then } m_{l}=-2,-1,0,+1, \text { or }+2 \\
\vdots \\
3 d & 5 \text { orbitals which can hold a total of } 10 \mathrm{e}^{-} \\
\vdots=2 &
\end{array}
$$

Schrodinger Wave Equation

quantum numbers: $\left(n, l, m_{l}, m_{s}\right)$
Shell - electrons with the same value of n
Subshell - electrons with the same values of n and I
Orbital - electrons with the same values of n, l, and m_{l}
How many electrons can an orbital hold?
If n, l, and m_{l} are fixed, then $m_{s}=1 / 2$ or $-1 / 2$

$$
\psi=\left(n, l, m_{l}, 1 / 2\right) \text { or } \psi=\left(n, l, m_{l,}-1 / 2\right)
$$

An orbital can hold 2 electrons

Energy of orbitals in a single electron atom
Energy only depends on principal quantum number \boldsymbol{n}

$$
\xlongequal{\begin{array}{l}
4 s-4 p---4 d-----4 f------- \\
3 s-3 p---3 d----- \\
2 s-2 p---\leftarrow \mathrm{n}=3
\end{array}} \begin{aligned}
& \begin{array}{l}
\mathrm{E}_{n}=-\mathrm{R}_{\mathrm{H}}\left(\frac{1}{n^{2}}\right) \\
1 s-\leftarrow \mathrm{n}=1
\end{array}
\end{aligned}
$$

"Fill up" electrons in lowest energy orbitals (Aufbau principle)

$$
\begin{aligned}
& \text { « Кว.เวuย } \\
& \begin{array}{l}
\left.5 s-4 p---\begin{array}{r}
4 d----- \\
3 d-----
\end{array}\right) .
\end{array} \\
& 3 s-{ }^{3 p-} \text { ? }
\end{aligned}
$$

Electron configuration is how the electrons are distributed among the various atomic orbitals in an atom.

Orbital diagram

Outermost subshell being filled with electrons

Order of orbitals (filling) in multi-electron atom

$1 \mathrm{~s}<2 \mathrm{~s}<2 \mathrm{p}<3 \mathrm{~s}<3 \mathrm{p}<4 \mathrm{~s}<3 \mathrm{~d}<4 \mathrm{p}<5 \mathrm{~s}<4 \mathrm{~d}<5 \mathrm{p}<6 \mathrm{~s}$

What is the electron configuration of Mg ?

$$
\begin{aligned}
& \text { Mg } 12 \text { electrons } \\
& 1 s<2 s<2 p<3 s<3 p<4 s \\
& 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} \quad 2+2+6+2=12 \text { electrons } \\
& \text { Abbreviated as }[\mathrm{Ne}] 3 s^{2} \quad[\mathrm{Ne}] 1 s^{2} 2 s^{2} 2 p^{6}
\end{aligned}
$$

What are the possible quantum numbers for the last (outermost) electron in Cl ?

Cl 17 electrons $1 \mathrm{~s}<2 \mathrm{~s}<2 \mathrm{p}<3 \mathrm{~s}<3 \mathrm{p}<4$ s
$1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{5} \quad 2+2+6+2+5=17$ electrons Last electron added to $3 p$ orbital

$$
\mathrm{n}=3 \quad l=1 \quad \mathrm{~m}_{l}=-1,0, \text { or }+1 \quad \mathrm{~m}_{\mathrm{s}}=1 / 2 \text { or }-1 / 240
$$

table 7.3	The Ground-stete Electron Conigurstone of the Elemente`							
Atomic Number	Symbol	Electron Configuration	Atomic Number	Symbol	Electron Configguration	Atomic Number	Symbol	Electron Configuration
1	H	is	15	Sr	$[\mathrm{Kc}] \mathrm{Fs} \mathrm{s}^{\text {d }}$	5	k.	[20$]$] $x^{2}+4=54$
2	He	$1 s$,	39	γ	[KT] s^{3} ¢ $\mathrm{c}^{\text {c }}$	76	Os	
3	L.	1 Hel 2 s	10	\angle		7	H	
\sim	R.		${ }^{11}$	Nh	$[K .1]=1.44^{4}$	T2	-	
5	B		42	M0	$[\mathrm{Kr}]$] $4.4 c^{\circ}$	79	A	
6	c		15	15		so	Hg_{5}	
?	N	[HC$)^{2} \mathrm{~s}^{2} \% \mathrm{p}^{3}$	4	Ra		81	T	
3	0	[17e] 2,290	45	Rh	$[\mathrm{Kr}] \times \mathrm{s} 4 \mathrm{c}^{4}$	\$2	T4	
9	F		16	P 1	$\mid \mathrm{kr\mid c}$	83	Bi	
19	N	[$\mathrm{HC} \mathrm{c}^{2} \mathrm{~s}^{2} 9 \mathrm{~S}^{3}$	47	Ag		8	Pr	
11	Na	[Ve]3	45	Ca		85	A	
12	M	\|scmss	19	1		\pm	kn	
13	Al		5	53		87	Fr	
15	si	[Ne] $\mathrm{S}^{3} 3$	31	$5{ }_{5}$		ss	Ral	[Ru]? ${ }^{\text {a }}$,
15	P		52	T:		sy	Ac	$1 \mathrm{kn\mid 73} \mathrm{~s}^{\prime} \times \mathrm{cd}$
16	s		5	1		a	Th	[Rn\|ists ${ }^{\text {d }}$
17	Cl	[Ve] W 3 \%	34	Xe		91	P.	
15	A		35	Cs	\|xelos	92	U	
19	K	[AP145	3	Ba	$18 \mathrm{c} / \mathrm{cs}^{2}$	95	N	
								42

