

Electron Configu Of Rep	urations resentat	of Ca ive El	tions and Anions ements
Na [Ne]3s ¹ Na ⁺ Ca [Ar]4s ² Ca ²⁺ Al [Ne]3s ² 3p ¹ Al ³⁺	[Ne] [Ar] [Ne]	Atom: catior electr	s lose electrons so that has a noble-gas outer on configuration.
1	H 1s ¹		H ⁻ 1s ² or [He]
Atoms gain electrons so that anion has a	F 1s ² 2s	s²2p⁵	F ⁻ 1s ² 2s ² 2p ⁶ or [Ne]
noble-gas outer electron configuration.	O 1s ² 2	s²2p⁴	O ²⁻ 1s ² 2s ² 2p ⁶ or [Ne]
<u> </u>	N 1s ² 2	s²2p³	N ³⁻ 1s ² 2s ² 2p ⁶ or [Ne]
			-

Γ		Ca	atio	ns a	and	Ar	nior	is C	Df R	Rep	res	ent	ativ	/e E	Eler	ner	nts	
	I IA I	2											3		1	8	2	1 18 8A
ı.		i A											0 34	14 4A	15 5 A	16 6.4	17 74	$-\frac{2}{De}_{-2\pi^2}$
2	-	÷											2.2	6 2/2/	2	200	2	10 Na 20242
з	4	ŝ,	3 2D	4 10	5 3D	6 6D	7 7D	8	- 80 -	10	11 115	12 2B	j,	11 81 93/2	-	1	5	18 AF 142545
4	1	205	21 52 40 557	$^{22}_{4055^0}$	25 V 46756	2 0 4757	25 Mh 4975*	26 10 4775	17 Ca 4r/25	78 N 4/15*	3 Ca 45%*	21 2n 4530*	10.1)) Ga 4,4,4	2		2 42 42	76 157 46760
5	1 1 1	2.4.5	79 7 20 ⁻¹	10 10 20 20	41 Nh 20.44	40 Ma 2047	-45 12 2745	- 24 Ro 225452	-14 Rh 2/42	- 16 10 4490	17 43 2940*	15 CA 20140*	2 - 2 2 - 2	90 50 2429	2.5	5 2010	1	5 36 2020
6	× 5 8	5.9.5	$\overset{\Sigma}{\underset{k_{0}>0}{\overset{La}{}}}$	22 117 54 547	75 13 15 24	2 W 1022	25 16 5725	7) 09 5=32	17 r 17	78 h 5450	75 .01 6/30*	я: Цр 44150*	-	57 15 6469	1	3 15 636*	2 4 10 10	36 Rn briter
÷	11 N	a 1 1	$\tilde{\tilde{s}}$	101	$\lim_{n \to \infty}$	$\underset{\substack{1 \leq i \leq n \\ i \leq i \leq n}}{\overset{(i)}{\sim}}$	$\lim_{\lambda \in M}$	193 197 3124	2723°	10 2/57	258 111 111	112 12/2011	13 202	11- 72776	15 72797	11 77 (*	05	$\frac{118}{18^{10}}$
	•			\angle				-			-							_
					and the second s	р стр	×z.	n Fin Groefe	20 80 674*	, Di Cite	64 63 57577	n ne	520	ere Bo	E Ster	$\hat{\tilde{m}}_{\omega \eta m}^{c}$	n 213	11 10 10 10
					20 20 2007	я 19 192%	$\frac{2}{1} \frac{1}{1} \frac{1}$		58.55 1995	8. 100	2 2 5 %		13 07 107	22 15 152	10 10 1/2**	310 243**	10 58 575*	10 17 2.949
																	6	

Isoelectronic: have the same number of electrons, and hence the same ground-state electron configuration
Na*: [Ne] A ^{l3+} : [Ne] F [.] : 1s ² 2s ² 2p ⁶ or [Ne]
O ²⁻ : 1s ² 2s ² 2p ⁶ or [Ne] N ³⁻ : 1s ² 2s ² 2p ⁶ or [Ne]
Na ⁺ , Al ³⁺ , F ⁻ , O ²⁻ , and N ³⁻ are all <i>isoelectronic</i> with Ne
What neutral atom is isoelectronic with H ⁻ ?
H ⁻ : 1s ² same electron configuration as He
7

Effective nuclear charge (Z_{eff}) is the "positive charge" felt by an electron. $Z_{\text{eff}} = Z - \sigma$ $0 < \sigma < Z (\sigma = \text{shielding constant})$ $Z_{\rm eff} \approx Z -$ number of inner or core electrons Ζ Core <u>Z</u>eff Radius (pm) 11 10 1 186 Na 160 Mg 12 10 2

3

4

10

10

143

132

9

AI

Si

13

14

TABI	E 8.2 T	he Ionization	Energies	(kJ/mol) of	the First 2	20 Elemen	ts
z	Element	t First	Second	Third	Fourth	Fifth	Sixth
1	н	1,312					
2	He	2,373	5,251				
3	Li	520	7,300	11,815			
-4	Be	899	1,757	14,850	21,005		
5	в	801	2,430	3,660	25,000	32,820	
6	C	1,086	2,350	4,620	6,220	38,000	47,261
7	N	1,400	2.860	4.580	7,500	9,400	53,000
8	0	1,314	3,390	5,300	7,470	11,000	13,000
9	F	1,680	3,370	6,050	8,400	11,000	15,200
10	No	2.080	3,950	6,120	9,370	12,200	15,000
11	Na	495.9	4,560	6,900	9,540	13,400	16,600
12	Mg	738.1	1,450	7,730	10,500	13,600	18,000
13	AL	577.9	1,820	2,750	11,600	14,800	18,400
14	Si	786.3	1,580	3,230	4,360	16,000	20,000
15	P	1.012	1,904	2,910	4,960	6,240	21,000
16	s	999.5	2,250	3,360	4,660	6,990	8,500
17	Cl	1,251	2,297	3,820	5,160	6,540	9,300
18	Ar	1,521	2,665	3,900	5,770	7,240	8,800
19	К	418.7	3,052	4,410	5,900	8,000	9,600
20	Ca	589.5	1,145	4,900	6,500	8,100	11,000

<i>Electron affinity</i> is the occurs when an electron gaseous state to form	ne negative of the energy ron is accepted by an n an anion.	ergy change that a atom in the
;	$X_{(g)} + e^{-} \longrightarrow X^{-}_{(g)}$	
$F_{(g)} + e^{-} \longrightarrow X^{-}_{(g)}$	$\Delta H = -328 \text{ kJ/mol}$	EA = +328 kJ/mol
$O_{(g)} + e^{-} \longrightarrow O_{(g)}^{-}$	$\Delta H = -141 \text{ kJ/mol}$	EA = +141 kJ/mol
		22

1A	2A	ЗA	4 A	5A	6A	7A	8A
н							He
73							<
Li	Be	в	С	N	0	F	Ne
60	≤ 0	27	122	0	141	328	<
Na	Mg	Al	Si	Р	s	CI	Ar
53	≤ 0	44	134	72	200	349	<
K	Ca	Ga	Ge	As	Se	Br	Kr
48	2.4	29	118	77	195	325	<
Rb	Sr	In	Sn	Sb	Te	1	Xe
47	4.7	29	121	101	190	295	<
Cs	Ba	TI	Pb	Bi	Po	AL	Rn
45	14	30	110	110	?	?	<

