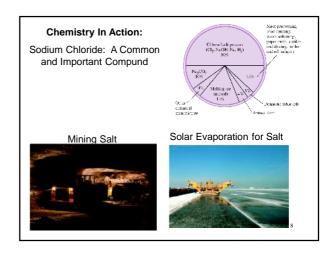
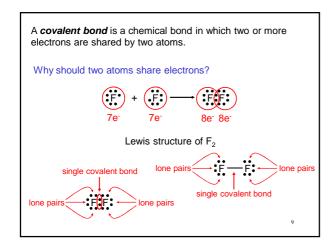
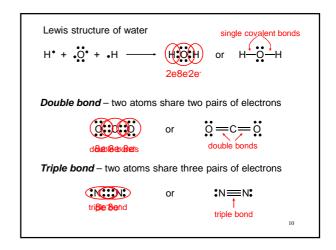
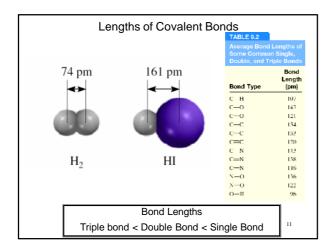


Valence electrons are the outer shell electrons of an atom. The valence electrons are the electrons that particpate in chemical bonding. Group e- configuration # of valence e-1A ns1 1 2A ns² 2 3 ЗА ns2np1 4A ns2np2 5A ns2np3 5 6A ns2np4 6 7A ns2np5 7 2

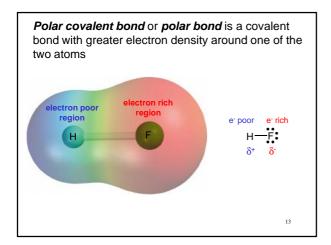


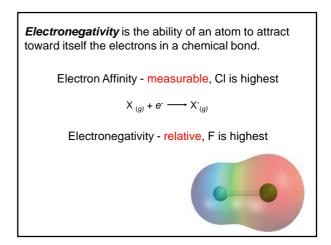


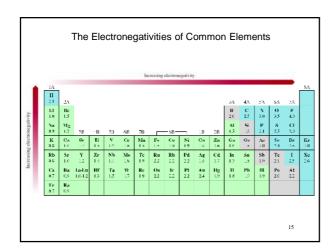


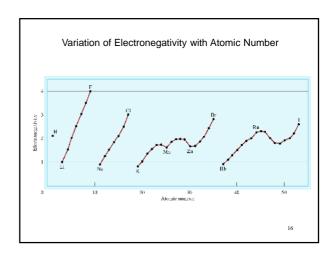


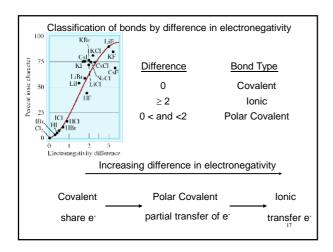
Compound	Lattice Energy (kJ/mol)	Melting Point (°C)
LiF	1017	845
LiCl	828	610
LiBr	787	550
LiI	732	450
NaCl	788	801
NaBr	736	750
NaI	686	662
KCl	699	772
KBr	689	735
KI	632	680
MgCl ₂	2527	714
Na ₂ O	2570	Sub*
MgO	3890	2800

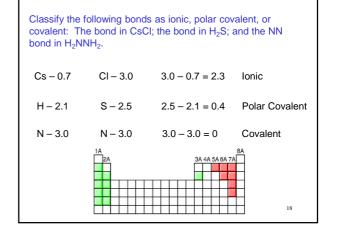


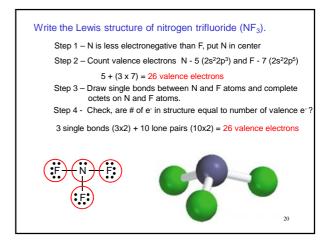







and a Covalent Compound			
Property	NaCl	CCI ₄	
Appearance	White solid	Colorless liquid	
Melting point (°C)	801	-23	
Molar heat of fusion* (kJ/mol)	30.2	2.5	
Boiling point (°C)	1413	76.5	
Molar heat of vaporization* (kJ/mol)	600	30	
Density (g/cm3)	2.17	1.59	
Solubility in water	High	Very low	
Electrical conductivity			
Solid	Poor	Poor	
Liquid	Good	Poor	





Writing Lewis Structures

- Draw skeletal structure of compound showing what atoms are bonded to each other. Put least electronegative element in the center.
- Count total number of valence e⁻. Add 1 for each negative charge. Subtract 1 for each positive charge.
- Complete an octet for all atoms except hydrogen
- If structure contains too many electrons, form double and triple bonds on central atom as needed.

9

Write the Lewis structure of the carbonate ion (${\rm CO_3}^{2\text{-}}$).

Step 1 - C is less electronegative than O, put C in center

Step 2 – Count valence electrons C - 4 (2s²2p²) and O - 6 (2s²2p⁴) -2 charge – 2e⁻

$$4 + (3 \times 6) + 2 = 24$$
 valence electrons

Step 3 – Draw single bonds between C and O atoms and complete octet on C and O atoms.

Step 4 - Check, are # of e in structure equal to number of valence e ? 3 single bonds (3x2) + 10 lone pairs (10x2) = 26 valence electrons

Step 5 - Too many electrons, form double bond and re-check # of e

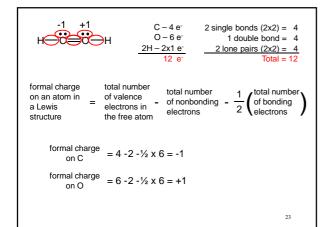
2 single bonds (2x2) = 4 1 double bond = 4 8 lone pairs (8x2) = 16

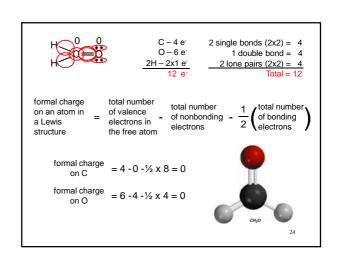
Total = 24

21

Two possible skeletal structures of formaldehyde (CH₂O)

An atom's **formal charge** is the difference between the number of valence electrons in an isolated atom and the number of electrons assigned to that atom in a Lewis structure.


formal charge on an atom in a Lewis structure total number of valence electrons in the free atom


total number of nonbonding electrons

- $\frac{1}{2}$ (total number of bonding electrons

The sum of the formal charges of the atoms in a molecule or ion must equal the charge on the molecule or ion.

22

Formal Charge and Lewis Structures

- For neutral molecules, a Lewis structure in which there are no formal charges is preferable to one in which formal charges are present.
- 2. Lewis structures with large formal charges are less plausible than those with small formal charges.
- Among Lewis structures having similar distributions of formal charges, the most plausible structure is the one in which negative formal charges are placed on the more electronegative atoms.

Which is the most likely Lewis structure for CH₂O?

A **resonance structure** is one of two or more Lewis structures for a single molecule that cannot be represented accurately by only one Lewis structure.

What are the resonance structures of the carbonate (CO₃²⁻) ion?

Exceptions to the Octet Rule

The Incomplete Octet

27

Exceptions to the Octet Rule

Odd-Electron Molecules

The Expanded Octet (central atom with principal quantum number n > 2)

$$S - 6e^{-}$$

 $SF_6 = \frac{6F - 42e^{-}}{48e^{-}}$

6 single bonds (6x2) = 12 18 lone pairs (18x2) = 36

28

Chemistry In Action: Just Say NO

 $NO_2^-(aq) + Fe^{2+}(aq) + 2H^+(aq) \longrightarrow$ $NO(g) + Fe^{3+}(aq) + H_2O(l)$

 $N_2(g) + O_2(g) \longrightarrow 2NO(g)$

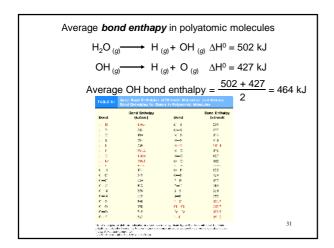
The enthalpy change required to break a particular bond in one mole of gaseous molecules is the **bond enthalpy**.

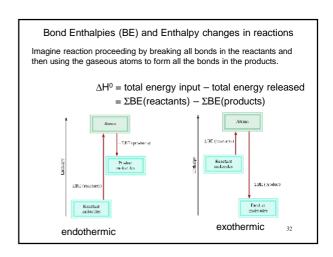
Bond Enthalpy

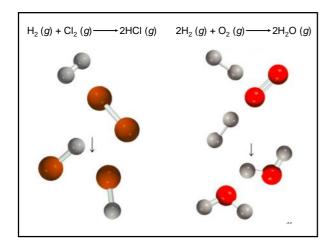
$$H_{2(g)} \longrightarrow H_{(g)} + H_{(g)} \overline{\Delta H^0 = 436.4 \text{ kJ}}$$

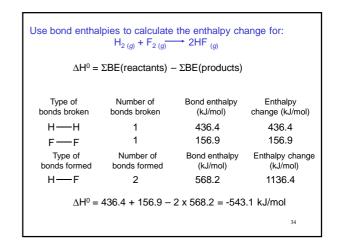
$$Cl_{2(g)} \longrightarrow Cl_{(g)} + Cl_{(g)} \Delta H^0 = 242.7 \text{ kJ}$$

$$HCI_{(g)} \longrightarrow H_{(g)} + CI_{(g)} \Delta H^0 = 431.9 \text{ kJ}$$


$$O_{2(g)} \longrightarrow O_{(g)} + O_{(g)} \Delta H^0 = 498.7 \text{ kJ} \quad \bigcirc = \bigcirc$$


$$N_{2(g)} \longrightarrow N_{(g)} + N_{(g)} \Delta H^0 = 941.4 \text{ kJ}$$
 \$N\leftar{N}


Bond Enthalpies


Single bond < Double bond < Triple bond

30

