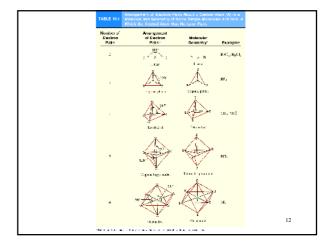
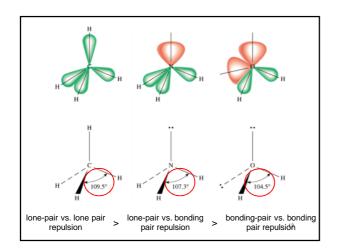
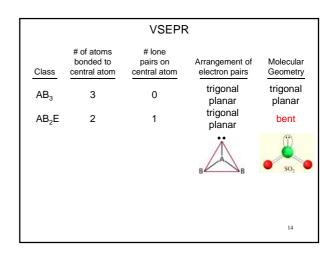
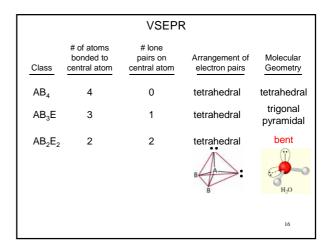
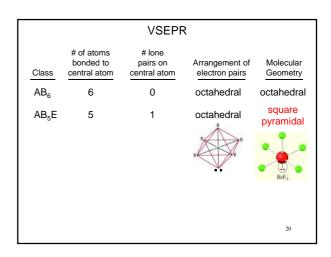

		VSEPF	₹	
Class	# of atoms bonded to central atom	# lone pairs on central atom	Arrangement of electron pairs	Molecular Geometry
AB ₂	2	0	linear	linear
AB ₃	3	0	trigonal planar	trigonal planar
AB ₄	4	0	tetrahedral	tetrahedral
			109.5°	B B
				6

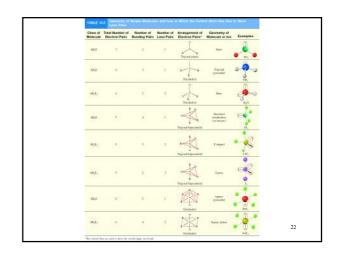



		VSEPR	₹	
Class	# of atoms bonded to central atom	# lone pairs on central atom	Arrangement of electron pairs	Molecular Geometry
AB_2	2	0	linear	linear
AB ₃	3	0	trigonal planar	trigonal planar
AB_4	4	0	tetrahedral	tetrahedral
AB ₅	5	0	trigonal bipyramidal	trigonal bipyramidal
			: 90°	8





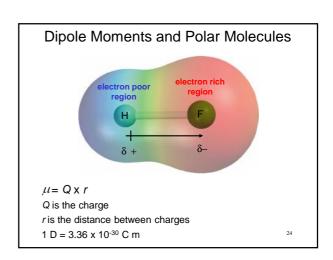

		VSEPF	?	
Class	# of atoms bonded to central atom	# lone pairs on central atom	Arrangement of electron pairs	Molecular Geometry
AB_4	4	0	tetrahedral	tetrahedral
AB ₃ E	3	1	tetrahedral	trigonal pyramidal
			B A B	NH ₃
				15

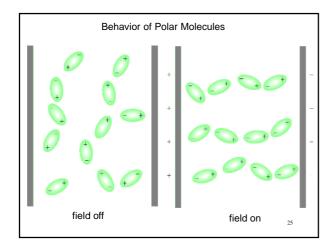

		VSEPR	R	
Class	# of atoms bonded to central atom	# lone pairs on central atom	Arrangement of electron pairs	Molecular Geometry
AB ₅	5	0	trigonal bipyramidal	trigonal bipyramidal
AB₄E	4	1	trigonal bipyramidal	distorted tetrahedron

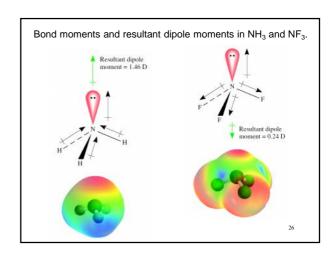
				17

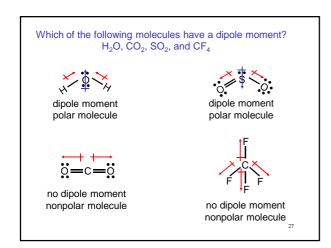
		VSEPR		
Class	# of atoms bonded to central atom	# lone pairs on central atom	Arrangement of electron pairs	Molecular Geometry
AB ₅	5	0	trigonal bipyramidal	trigonal bipyramidal
AB₄E	4	1	trigonal bipyramidal	distorted tetrahedron
AB ₃ E ₂	3	2	trigonal bipyramidal	T-shaped
			**************************************	CIF ₃
				18

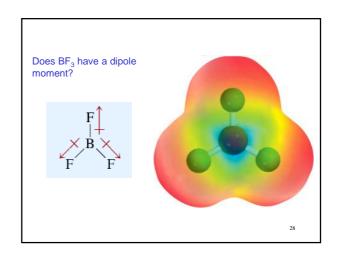
		VSEPR	}	
Class	# of atoms bonded to central atom	# lone pairs on central atom	Arrangement of electron pairs	Molecular Geometry
AB ₅	5	0	trigonal bipyramidal	trigonal bipyramidal
AB ₄ E	4	1	trigonal bipyramidal	distorted tetrahedron
AB ₃ E ₂	3	2	trigonal bipyramidal	T-shaped
AB ₂ E ₃	2	3	trigonal bipyramidal	linear

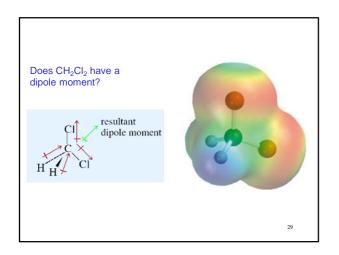

		VSEPF	र	
Class	# of atoms bonded to central atom	# lone pairs on central atom	Arrangement of electron pairs	Molecular Geometry
AB ₆	6	0	octahedral	octahedral
AB₅E	5	1	octahedral	square pyramidal
AB ₄ E ₂	4	2	octahedral	square planar
			B B	XeF ₄
				21

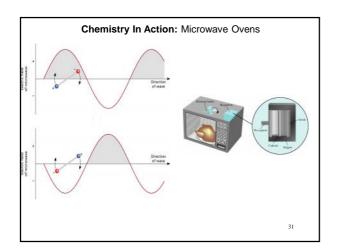


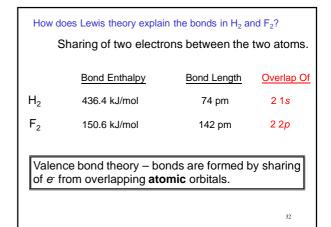

Predicting Molecular Geometry

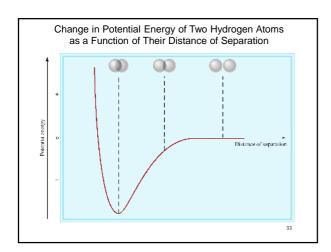

- 1. Draw Lewis structure for molecule.
- 2. Count number of lone pairs on the central atom and number of atoms bonded to the central atom.
- 3. Use VSEPR to predict the geometry of the molecule.

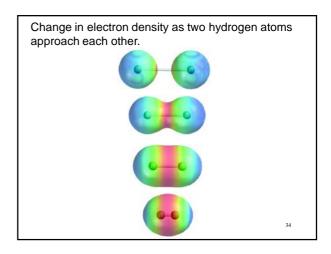

What are the molecular geometries of SO₂ and SF₄?

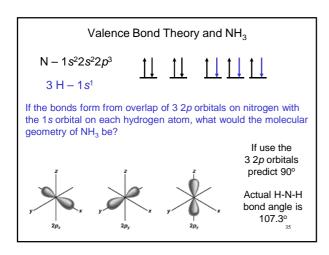


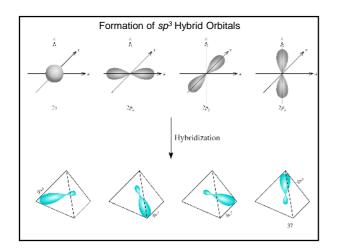


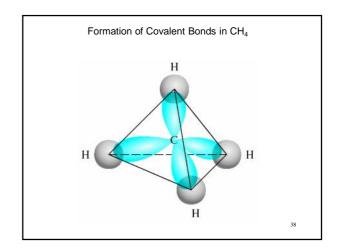


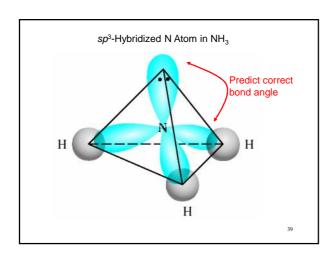


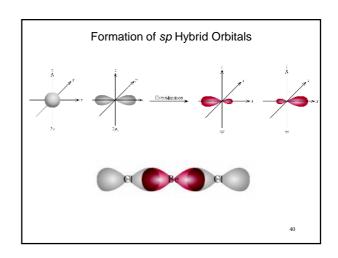


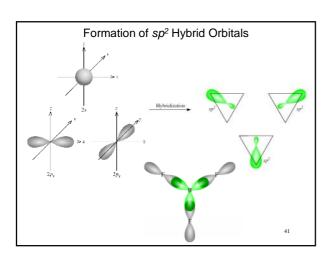

TABLE 10.3 Dip	pole Moments of Some Polar Mol	ecules
Molecule	Geometry	Dipole Moment (D)
HF	Linear	1.92
HCI	Linear	1.08
HBr	Linear	0.78
HI	Linear	0.38
H_2O	Bent	1.87
H ₂ S	Bent	1.10
NH_3	Trigonal pyramidal	1.46
SO_2	Bent	1.60
		30

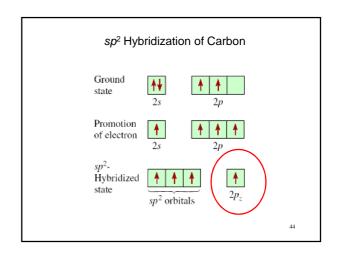


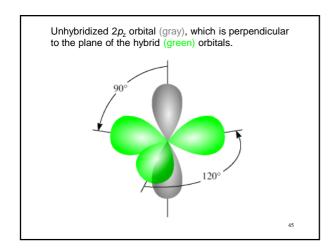


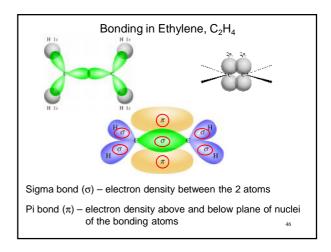

Hybridization – mixing of two or more atomic orbitals to form a new set of hybrid orbitals.

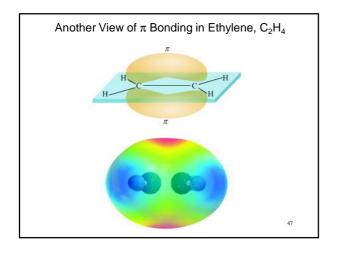

- Mix at least 2 nonequivalent atomic orbitals (e.g. s and p). Hybrid orbitals have very different shape from original atomic orbitals.
- Number of hybrid orbitals is equal to number of pure atomic orbitals used in the hybridization process.
- 3. Covalent bonds are formed by:
 - a. Overlap of hybrid orbitals with atomic orbitals
 - b. Overlap of hybrid orbitals with other hybrid orbitals

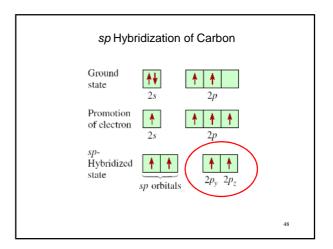

36

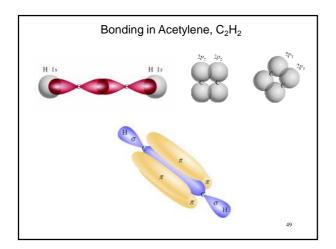


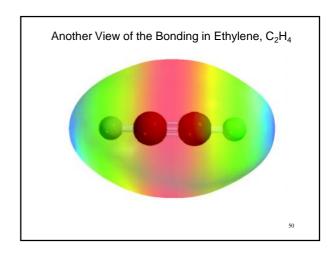


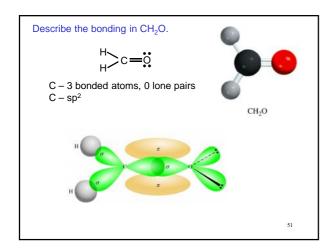


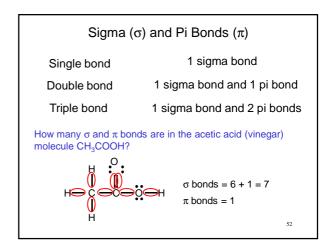

How do I predict the hybridization of the central atom?						
1. Draw the Le	wis structure of the	e molecule.				
	Count the number of lone pairs AND the number of atoms bonded to the central atom					
# of Lone Pairs	# of Lone Pairs					
# of Bonded Atoms	# of Bonded Atoms Hybridization Examples					
2	2 sp BeCl ₂					
3	$3 \hspace{1cm} \mathrm{sp^2} \hspace{1cm} \mathrm{BF_3}$					
4 $\mathrm{sp^3}$ $\mathrm{CH_4}$, $\mathrm{NH_3}$, $\mathrm{H_2O}$						
5	sp³d	PCI ₅				
$6 sp^3d^2 SF_6 42$						

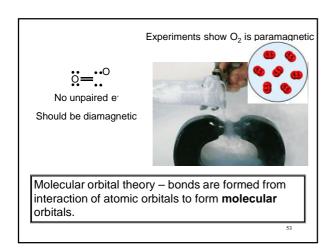


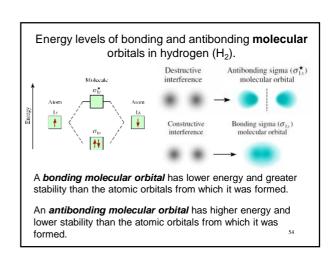


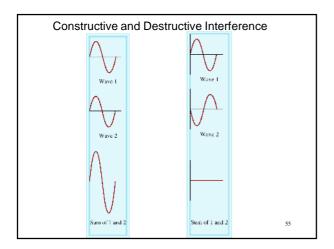


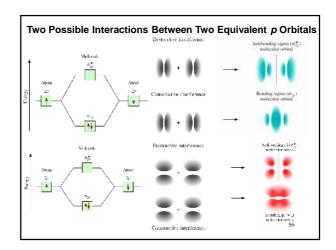


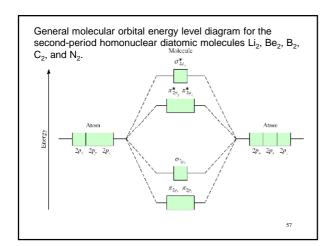


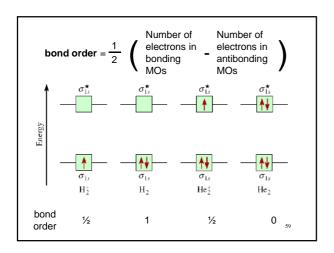


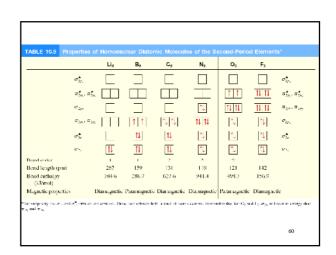


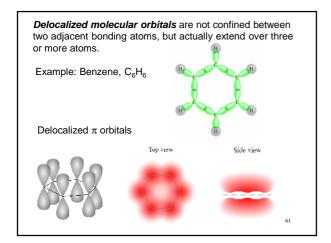


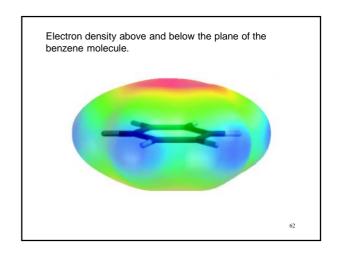


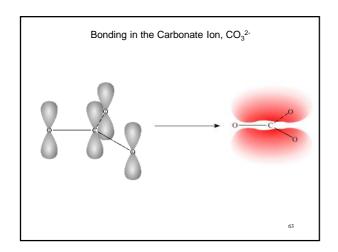







Molecular Orbital (MO) Configurations


- The number of molecular orbitals (MOs) formed is always equal to the number of atomic orbitals combined.
- 2. The more stable the bonding MO, the less stable the corresponding antibonding MO.
- 3. The filling of MOs proceeds from low to high energies.
- 4. Each MO can accommodate up to two electrons.
- 5. Use Hund's rule when adding electrons to MOs of the same energy.
- 6. The number of electrons in the MOs is equal to the sum of all the electrons on the bonding atoms.


58

