2

Metallurgy and the Chemistry of Metals

Chapter 20

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or displ

A *mineral* is a naturally occurring substance with a range of chemical compositions.

An **ore** is a mineral deposit concentrated enough to allow economical recovery of a desired metal.

Metallurgy is the science and technology of separating metals from their ores and of compounding alloys.

An *alloy* is a solid solution either of two or more metals, or of a metal or metals with one or more nonmetals.

Recovery of a metal from its ore:

- 1. Preparation of the ore
- 2. Production of the metal
- 3. Purification of the metal

Туре	Minerals
Uncombined metals	Ag, Au, Bi, Cu, Pd, Pt
Carbonates	BaCO ₃ (witherite), CaCO ₃ (calcite, limestone), MgCO ₃ (magnesite), CaCO ₃ - MgCO ₃ (dolomite), PbCO ₃ (cerussite), ZnCO ₃ (smithsonite)
Halides	CaF2 (fluorite), NaCl (halite), KCl (sylvite), Na3AlF6 (cryolite
Oxides	Al ₂ O ₃ · 2ll ₂ O (bauxite), Al ₂ O ₃ (corundum), Fe ₂ O ₃ (hematite), Fe ₃ O ₄ (magnetite), Cu ₂ O (cuprite), MnO ₂ (pyrolusite), SnO ₂ (cassiterite), TiO ₂ (rutile), ZnO (zincite)
Phosphates	Ca ₃ (PO ₄) ₂ (phosphate rock), Ca ₅ (PO ₂) ₃ OH (hydroxyapatite)
Silicates	$Be_3Al_2Si_6O_{18}$ (heryl), $ZrSiO_4$ (zircon), $NaAlSi_3O_8$ (albite), $Mg_3(Si_4O_{10})(OH)_2$ (tale)
Sulfides	Ag ₂ S (argentite), CdS (greenockite), Cu ₂ S (chalcocite), FeS ₂ (pyrite), HgS (cinnabar), PbS (galena), ZnS (sphalerite)
Sulfates	$BaSO_4$ (barite), $CaSO_4$ (anhydrite), $PbSO_4$ (anglesite), $SrSO_4$ (celestite), $MgSO_1\cdot 7H_2O$ (epsomite)
	3

Production of MetalsRoasting $CaCO_3 (s) \longrightarrow CaO (s) + CO_2 (g)$ $2PbS (s) + 3O_2 (g) \longrightarrow 2PbO (s) + 2SO_2 (g)$ Chemical Reduction $TiCl_4 (g) + 2Mg (h) \longrightarrow Ti (s) + 2MgCl_2 (h)$ $Cr_2O_3 (s) + 2AI (s) \longrightarrow 2Cr (h) + Al_2O_3 (s)$ $WO_3 (s) + 3H_2 (g) \longrightarrow W (s) + 3H_2O (g)$ Electrolytic Reduction $2MO (h) \longrightarrow 2M (at cathode) + O_2 (at anode)$

 $2MCI (h) \longrightarrow 2M (at cathode) + Cl_2 (at anode)$

pe 	С		Composition (Percent by Mass)*						
de-		Mn	Р	s	SI	NI	Cr	Others	Uses
	1.35	1.65	0.04	0.05	0.05	-	-	Ct (0.2-0.6)	Sheet procilets, tools
gh-strength	0.25	1.65	0.04	0.05	0.15-0.9	0.4-1.0	0.3-1.3	Cu (0.01-0.08)	Construction, steam turbines
ár less	0.03-1.2	1.0-10	0.04-0.05	0.03	1-3	1-22	4.0-27		Kitchen intensils, razor blades
gie rumber mei	enies lite musur	WIE 4739F	ti al the schola	no: posa	n				

TABLE 20.4 Properties of Alkali Metals							
	Li	Na	к	Rb	Cs		
Valence electron configuration	$2s^1$	$3s^{1}$	$4s^1$	$5s^1$	$6s^1$		
Density (g/cm3)	0.534	0.97	0.86	1.53	1.87		
Melting point (°C)	179	97.6	63	39	28		
Boiling point (°C)	1317	892	770	688	678		
Atomic radius (pm)	152	186	227	248	265		
Ionic radius (pm)*	78	98	133	148	165		
Ionization energy (kJ/mol)	520	496	419	403	375		
Electronegativity	1.0	0.9	0.8	0.8	0.7		
Standard reduction potential $\left(V\right)^{\dagger}$	-3.05	-2.71	-2.93	-2.93	-2.92		
Refers to the cation M^+ , where M denotes an a Tae half-reaction $M^+(aq) + e^- \longrightarrow M(s)$.	dkali metal ato	ма.	Halite	e: NaCl	6		

	Be	Mg	Ca	Sr	Ba
Valence electron configuration	$2s^2$	3x ²	$4s^2$	$5s^2$	6s ²
Density (g/cm ³)	1.86	1.74	1.55	2.6	3.5
Melting point (°C)	1280	650	838	770	714
Boiling point (°C)	2770	1107	1484	1380	1640
Atomic radius (pm)	112	160	197	215	222
Ionic radius (pm)*	34	78	106	127	143
First and second ionization	899	738	590	548	502
energies (kJ/mol)	1757	1450	1145	1058	958
Electronegativity	1.5	1.2	1.0	1.0	0.9
Standard reduction potential (V)	-1.85	-2.37	-2.87	-2.89	-2.9
efers to the cation M^{3-} , where M denotes an se half-reaction is $M^{3+}(aq) + 2e^- \longrightarrow M(s)$.	alkali eath m).	etal atom.	C		

