

Counting

- Different specialties use different counting numbers
- Doughnuts and eggs are sold by the dozen
- Pennies are wrapped in rolls of 50
- ATMs dispense money in units of $\$ 20$ but Congress spends by the million

Outline

- The Mole

- The mole and solutions: Molarity
- Mass Relations in Chemical Formulas
- Mass Relations in Reactions

Avogadro's Number: 1 mole $=6.022 \times 10^{23}$ Particles

- There is a number that corresponds to a collection of atoms where the mass of that collection in grams is numerically equal to the same number in amu, for a single atom
- $\mathrm{N}_{\mathrm{A}}=6.022 \times 10^{23}$
- Number of atoms of an element in a sample whose mass is numerically equal to the mass of a single atom
- By knowing Avogadro's number and the atomic mass, it is now possible to calculate the mass of a single atom in grams

The Mole

- A mole is Avogadro's number of items
- The mole is a very large number
- Avogadro's number of pennies is enough to pay all the expenses of the United States for a billion years or more, without accounting for inflation
- The molar mass
- The molar mass, MM, in grams/mole, is numerically equal to the sum of the masses (in amu) of the atoms in the formula

Significance of the Mole

- By knowing Avogadro's number and the atomic mass, it is now possible to calculate the mass of a single atom in grams

Molar Masses of Some Substances

Formula	Sum of Atomic Masses	Molar Mass, MM
\bigcirc	16.00 amu	$16.00 \mathrm{~g} / \mathrm{mol}$
O_{2}	$2(16.00 \mathrm{amu})=32.00 \mathrm{amu}$	$32.00 \mathrm{~g} / \mathrm{mol}$
$\mathrm{H}_{2} \mathrm{O}$	$2(1.008 \mathrm{amu})+16.00 \mathrm{amu}=18.02 \mathrm{amu}$	$18.02 \mathrm{~g} / \mathrm{mol}$
NaCl	$22.99 \mathrm{amu}+35.45 \mathrm{amu}=58.44 \mathrm{amu}$	$58.44 \mathrm{~g} / \mathrm{mol}$

Example 3.1, (Cont'd)		
©		
ANALYSIS		
Information given:	moles of acetylsalicylic acid (0.509) formula for acetylsalicylic acid ($\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}$)	
Information implied.	molar mass (MM) of acetylalicylic acid	
Asked for:	mass of acetylyalicylic acid (ASA)	
strateor		
Substitute into Equation 3.1$\text { mass }=\mathrm{MM} \times n$		
Solution		
MM of $\mathrm{CH}_{4} \mathrm{H}_{4}$ mass	$\begin{aligned} & 9(12.01)+8(1.108)+4(16.00)=180.15 \mathrm{~g} \text { mol } \\ & \text { mass }=\mathrm{MM} \times n=0.509 \mathrm{~mol} \times \frac{180.15 \mathrm{~g}}{1 \mathrm{~mol}}-9.7 \mathrm{~g} \end{aligned}$	

Example 3.1

Acetylsalicylic acid, $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{4}$ is the active ingredient of aspirin.

(a) What is the mass in grams of 0.509 moles of acetylsalicylic acid (ASA)?
(b) A one-gram sample of aspirin contains 75.2% by mass of $\mathrm{C}_{8} \mathrm{H}_{3} \mathrm{O}_{4}$. How many moles of acetylalicylic acid are
in the sample?
© How many molecules of $\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{O}_{4}$ are there in 12.00 g of acetylsalicylic acid? How many carbon atoms?

The Significance of the Mole

- In the laboratory, substances are weighed on balances, in units of grams
- The mole allows us to relate the number of grams of a substance to the number of atoms or molecules of a substance

Mole-Gram Conversions

- $m=M M X n$
- $\mathrm{m}=$ mass
- MM = molar mass
- $\mathrm{n}=$ number of moles

Reactions in the Laboratory

- Because water is common everywhere, most chemical reactions take place in aqueous solution
- Water is called the universal solvent
- Three common types of reactions in solution:
- Precipitation reactions
- Acid-base reactions
- Oxidation-reduction reactions
- In Chapter 4, we will examine these reactions in detail - for now, we will look at the concentration of solutions in terms of their molarity

Figure 3.2 - Schema for Working With Moles and Masses

Solute Concentrations - Molarity

- Definition of molarity
- Molarity = moles of solute/liters of solution
- Symbol is M
- Square brackets are used to indicate concentration in M
- $\left[\mathrm{Na}^{+}\right]=1.0 \mathrm{M}$
- Consider a solution prepared from 1.20 mol of substance A, diluted to a total volume of 2.50 L
- Concentration is $1.20 \mathrm{~mol} / 2.50 \mathrm{~L}$ or 0.480 M

Additivity

- Masses are additive; volumes are not
- The total mass of a solution is the sum of the mass of the solute and the solvent
- The total volume of a solution is not the sum of the volumes of the solute and solvent

Volumetric Glassware

- Volumetric pipets, burets and flasks are made so that they contain a known volume of liquid at a given temperature
- Preparing solutions with concentrations in M involves using volumetric glassware

Figure 3.3 - Preparation of Molar Solution

Molarity as a Conversion Factor

- The molarity can be used to calculate
- The number of moles of solute in a given volume of solution
- The volume of solution containing a given number of moles of solute

Example 3.2, (Cont'd)

Dissolving lonic Solids

- When an ionic solid is dissolved in a solvent, the ions separate from each other
- $\mathrm{MgCl}_{2}(\mathrm{~s}) \quad \mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq})$
- The concentrations of ions are related to each other by the formula of the compound:
- Molarity MgCl_{2} of $=$ molarity of Mg^{2+}
- Molarity of $\mathrm{Cl}^{-}=2 \mathrm{X}$ molarity of MgCl_{2}
- Total number of moles of ions per mole of MgCl_{2} is 3

Determining Moles of lons

- By knowing the charge on ions, the formula of a compound can be quickly determined
- The formula of the compound is key to determining the concentration of ions in solution

Example 3.3, (Cont'd)

Chemical Formulas

- In Chapter 2, we learned that the chemical formula tells us the number of atoms of each element in a compound, whether that is a molecular compound or an ionic compound
- We can now combine that knowledge with the knowledge of molar mass to begin relating elements by mass

Example 3.3

Example 3.3, (Cont'd)

strategy

1. Use the molarity of K^{+}found in (a) and substitute into Equation 3.2 to find the moles of K^{+}initially.
2. Find the moles of K^{+}atter the addition.
3. Find $\left[\mathrm{K}^{+}\right]$again by substituting into Equation 3.2 .
4. Find $\left[\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}-7\right.$ by relating $\left[\mathrm{K}^{+}\right]$to $\mathrm{K}_{3} \mathrm{Cr}_{2} \mathrm{O} \mathrm{O}_{2}$.
5. The overall plan is:

SOLUTION	
$\left(\mathrm{mol} \mathrm{K} \mathrm{K}^{+}\right)_{\text {maxal }}$	$0.125 \mathrm{~L} \times \frac{0.290 \mathrm{~mol} \mathrm{~K}^{+}}{1 \mathrm{~L}}=0.03625$
$(\mathrm{mol} \mathrm{K})_{\text {bax }}$	$0.03625+0.200=0.236$
$\left[\mathrm{K}^{+}\right]_{\text {noul }}$	$\frac{0.236 \mathrm{~mol} \mathrm{~K}}{0.125 \mathrm{~L}}-1.89 \mathrm{~mol} / \mathrm{L}-1.89 \mathrm{M}$
$\left[\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}\right]_{\text {] }}$ mad	$\frac{1.89 \mathrm{~mol} \mathrm{~K}^{+}}{1 \mathrm{~L}} \times \frac{1 \mathrm{~mol} \mathrm{~K}_{\mathrm{K}_{2} \mathrm{C}_{2} \mathrm{O}_{3}}^{2 \mathrm{~mol} \mathrm{~K}^{+}}=0.945 \mathrm{~mol} / \mathrm{L}-0.945 \mathrm{~A} .}{}$
	END POINT

The concentration of K^{+}should be twice that of $\mathrm{Cr}_{2} \mathrm{O}_{4}{ }^{2-}$ in either solution. It is!

Mass Relations in Chemical Formulas

- Percent composition from formula
- The percent composition of a compound is stated as then number of grams of each element in 100 g of the compound
- By knowing the formula, the mass percent of each element can be readily calculated

Example 3.4

Example 3.4, (Cont'd)

Simplest Formula from Chemical Analysis

- Often, the formula is not known, but data from chemical analysis is known
- Amount of each element in grams
- Can be used to determine the simplest formula
- Smallest whole-number ratio of atoms in a compound
- $\mathrm{H}_{2} \mathrm{O}$ is the simplest formula and the molecular formula for water
- HO is the simplest formula for hydrogen peroxide; the molecular formula is $\mathrm{H}_{2} \mathrm{O}_{2}$

Figure 3.5: Flowchart for Determining Simplest Formula

Example 3.5 - Simplest Formula from Masses of Elements

Example 3.5, (Cont'd)

```
O:}\frac{9.52.g.g}{16.00 g/mol}=0.595 mol
K}:\frac{0.700\textrm{mol}}{0.70\textrm{mol}}=1;\quad\operatorname{Cr}:\frac{0.170\textrm{mol}}{0.170\textrm{mol}}=15\quadO:\frac{0.595 mol}{0.170}\textrm{mol}=3.
Since we need smallest whole number ratios, we multiply all ratios by 2.
2 K:2 Cr:70
K2C+2O)
simplest formula \(\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}\); END POINT
```

1. A mole ratio of $1.00 \mathrm{~A}: L 00 \mathrm{~B}: 3.33 \mathrm{C}$ would imply a formula $\mathrm{A}, \mathrm{B}, \mathrm{C}_{n}$. If the mole ratio were $\mathrm{L} .00 \mathrm{~A}: 2.50 \mathrm{~B}: 5.50 \mathrm{C}$, the formula would be A, B_{3}, C_{11}. In general. multiply through by the smallest whole number that will give integers for all the subscripts
2. Note that in this case, the mass of the sample was not used to find the simplest formula.

Example 3.6, (Cont'd)

SOLUTION	
1. mass of C	$7.33 \mathrm{~g} \mathrm{CO}_{2} \times \frac{12.01 \mathrm{gC}^{4.01 \mathrm{~g} \mathrm{CO}_{2}}}{}=200 \mathrm{~g} \mathrm{C}$
mass of H	$3.00 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \times \frac{2(1.008) \mathrm{g} \mathrm{H}}{18.02 \mathrm{~g} \mathrm{H}} \mathbf{2} \mathrm{O}=0.336 \mathrm{~g} \mathrm{H}$
2. mass of O	$\text { mass of } \begin{aligned} \mathrm{O} & =\text { mass of sample }-(\text { mass of } \mathrm{C}+\text { mass of } \mathrm{H}) \\ & -5.00 \mathrm{~g}-(2.00 \mathrm{~g}+0.336 \mathrm{~g})-2.66 \mathrm{~g} \end{aligned}$
3. mol of each element	$\text { C: } \frac{2.00 \mathrm{~g} \mathrm{C}}{12.01 \mathrm{~g} / \mathrm{mol}}=0.167 ; \text { H: } \frac{0.336 \mathrm{~g} \mathrm{H}}{1.008 \mathrm{~g} / \mathrm{mol}}=0.333 ; 0: \frac{2.66 \mathrm{~g} \mathrm{O}}{16.00 \mathrm{~g} / \mathrm{mol}}=0.166$
ratios	$C: \frac{0.167 \mathrm{~mol}}{0.166 \mathrm{~mol}}=1 ; H: \frac{0.333 \mathrm{~mol}}{0.167 \mathrm{~mol}}=2 ; 0 ; \frac{0.166 \mathrm{~mol}}{0.166 \mathrm{~mol}}=1$
simplest formula	Using the ratios as subscripts, the simplest formula is $\mathrm{CH}_{2} \mathrm{O}$.

Molecular Formula from Simplest Formula

- The relationship between simplest and molecular formula is a whole number
- The whole number relates the molecular mass to the mass of the simplest formula as well

Example 3.6

The compound that gives vinggar its sour taste is acetic acid, which contains the clements carbon, hydrogen, and oxygen.
When 5.00 g of acetic acid are burned in air, 7.33 g of CO_{2} and 3.00 g of water are obtained. What is the simplest formula
When 5.00 g of acetic acid are burned in airi, 7.33 g of CO_{2} and 3.00 g of water are obtained. What is the simplest formula
of acetic acid?
Information given:
Information given:
elements in acetic acid (C, H, and O)
elements in acetic acid (C, H, and O)
mass of acetic acid (5.00 g)
mass of acetic acid (5.00 g)
result of combustion analysis (7.33 g CO},3.00\textrm{g H2O}
result of combustion analysis (7.33 g CO},3.00\textrm{g H2O}
molar masses (MM) of CO2 and H2O
molar masses (MM) of CO2 and H2O
simplest formula of acetic acid
simplest formula of acetic acid
.Find the mass of C and }\textrm{H}\mathrm{ by using the conversion factors
.Find the mass of C and }\textrm{H}\mathrm{ by using the conversion factors
12.01\textrm{gC}}\quad2(1.008)\textrm{g H
12.01\textrm{gC}}\quad2(1.008)\textrm{g H
44.01 \mp@subsup{g CO}{2}{2}\quad18.02\mp@subsup{\textrm{g H}}{2}{}\textrm{O}
44.01 \mp@subsup{g CO}{2}{2}\quad18.02\mp@subsup{\textrm{g H}}{2}{}\textrm{O}
2. Find the mass of O by difference:
2. Find the mass of O by difference:
mass of sample = mass of C + mass of H}+\mathrm{ mass of O
mass of sample = mass of C + mass of H}+\mathrm{ mass of O
3. Follow the schematic pathway shown in Figure 3.5.
3. Follow the schematic pathway shown in Figure 3.5.

Example 3.7 - Simplest Formula from Mass
Percents

- When dealing with percentages, assume 100 g of the compound
- By doing so, the unitless percentage becomes a meaningful mass

Mass Relations in Reactions

- Chemical equations represent chemical reactions
- Reactants appear on the left
- Products appear on the right
- Equation must be balanced
- Number of atoms of each element on the left
- ...equals the number of atoms of each element on the right

How are Equations Written?

- We must know the reactants and the products for a reaction for which an equation is to be written
- It is often necessary to do an experiment and an analysis to determine the products of a reaction
- Determining the products is often time consuming and difficult

Writing Chemical Equations

1. Write a skeleton equation for the reaction.
2. Indicate the physical state of each reactant and product.
3. Balance the equation

- Only the coefficients can be changed; subscripts are fixed by chemical nature of the reactants and products
- It is best to balance atoms that appear only once on each side of the equation first

Example 3.8

for this shemikal reaction.

1. Translate manses to formules and write a "skeleton" equation. Recall the discussion in Sections 26 and 27
2. Write the physical state
3. Balance by starting with an element that appears only once on esch side of the equation
4. Cbeck that you have the same number of atoms of each element on both sides of the equation.
2.2
5. Physical tutes
6. Balance
7. Check H
Chekk
ChekNa
Checko
$\mathrm{NaOH}_{3}(s)+\mathrm{CO}_{5}(8) \rightarrow \mathrm{Na}_{4} \mathrm{CO}(s)+\mathrm{H}_{3} \mathrm{O}(t)$ $2 \mathrm{NaOH}_{4}(s)+\mathrm{CO}_{4}(8) \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{4}(s)+\mathrm{H}_{2} \mathrm{O}(t)$ 2 on left 2 on righ Ionleft Ion righ 2 on left 20 righ $2+2-4$ on left $3+1-4$ on righ The bollanced equation is $2 \mathrm{NaOH}_{(s)}+\mathrm{CO}_{4}(8) \rightarrow \mathrm{Na}_{2} \mathrm{CO} 3(6)+\mathrm{H}_{2} \mathrm{O}(l)$

Figure 3.8: Flowchart for Mole-Mass Calculations

- The coefficients of a balanced equation represent the numbers of moles of reactants and products
- $2 \mathrm{~N}_{2} \mathrm{H}_{4}(\mathrm{I})+\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{I}) \quad 3 \mathrm{~N}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}$ (I)
- $2 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{H}_{4}+1 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{O}_{4} \quad 3 \mathrm{~mol}_{2}+4 \mathrm{~mol} \mathrm{H} \mathrm{H}_{2}$

Example 3.9

EXA

Ammonia is used to make fertilizers for lawns and gardens by reacting nitrogen gas with hydrogen gas. The balanced equation for the reaction is

$$
\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \longrightarrow 2 \mathrm{NH}_{s}(g)
$$

a How many moles of ammonia are formed when 1.34 mol of nitrogen react?
(b) How many grams of hydrogen are required to produce $2.75 \times 10^{1} \mathrm{~g}$ of ammonia?
© How many molecules of ammonia are formed when 2.92 g of hydrogen react?
(d) How many grams of ammonia are produced when 15.0 L of air (79% by volume nitrogen) react with an excess of hydrogen ? The density of nitrogen at the conditions of the reaction is 1.25 p

Example 3.9, (Cont'd)

STRATEGY	
For all parts of this example, follow the schematic puthway shown in Figure 3.8.	
(a)	
ANALYSIS	
Information given:	$\text { balanced equation: } \left.\left[\mathrm{N}_{3}(g)+3 \mathrm{H}_{2}(g) \rightarrow 2 \mathrm{NH}\right)(g)\right]$ $\text { moles } N_{2}(1.34)$
Asked for:	mol NH_{3} formed
SOLUTION	
mol NH3	mol $\mathrm{H}_{2} \rightarrow$ mol NH N_{3} $1.34 \mathrm{~mol} \mathrm{H}_{2} \times \frac{2 \mathrm{~mol} \mathrm{NH}_{3}}{1 \mathrm{~mol} \mathrm{~N}_{2}}=2.68 \mathrm{~mol} \mathrm{NH}_{3}$

Example 3.9, (Cont'd)

(0)	
	ANaLYSIS
Information given:	balanced equation: $\left[\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{2}(\mathrm{~g})\right]$ $V_{u m}(15.0 \mathrm{~L})$; \% by volume of N_{2} in air (79%); density, d, of $\mathrm{N}_{2}(1.25 \mathrm{~g} / \mathrm{L})$
Lnformation implice	molar masses of N_{2} and NH_{3}
Asked for:	mass of NH , produced
	SOLUTION
mass NH_{3}	

Interpreting by Mass

- Reactants
- One mole Sb (243.6 g)
- Three moles $\mathrm{I}_{2}(761.4 \mathrm{~g})$
- Two moles Sbl_{3} (1005.0 g)
- All of the reactants are converted to product

In the Laboratory

- Reactants are usually not mixed in exact ratios
- An excess of one reactant is often used
- Usually the less (or least) expensive reactant
- One reactant will then limit the amount of product that will form

Approach to Limiting Reactant Problems

1. Calculate the amount of product that will form if the first reactant were completely consumed.
2. Repeat the calculation for the second reactant in the same way.
3. Choose the smaller amount of product and relate it to the reactant that produced it. This is the limiting reactant and the resulting amount of product is the theoretical yield.
4. From the theoretical yield, determine how much of the reactant in excess is used, and subtract from the starting amount.

$\mathrm{Sb}-\mathrm{I}_{2}$ with a limiting reactant

- Suppose the mixture is
- 3.00 mol Sb
- $3.00 \mathrm{~mol} \mathrm{I}_{2}$
- In this case
- 1.00 mol Sb will be left over
- 2.00 mol of Sb will be used
- React with $3.00 \mathrm{~mol} \mathrm{I}_{2}$
- Form $2.00 \mathrm{~mol} \mathrm{Sbl}_{3}$

Verifying the Limiting Reactant

- Once the limiting reactant has completely reacted, there is no more left to react with the excess of the other reactant

Pancakes

- Now start with
- 2 cups flour
- 2 teaspoons baking powder
- 1 egg
- 1 cup milk
- It is clear that the egg will limit you to 8 pancakes and that you'll have a cup of flour, a teaspoon of baking powder and a half a cup of milk left over

The Pancake Analogy

- Consider a recipe for pancakes. To make 16 pancakes, you need
- 2 cups flour
- 2 teaspoons baking powder
- 2 eggs
- 1 cup milk

Pancakes

- The egg is the limiting reactant and the theoretical yield is 8 pancakes

Experimental Yield

- Experimental yields are always lower than theoretical yields
- Some product is lost to competing reactions
- Some product is lost to handling
- Some product may be lost in separating it from the reaction mixture
- The actual yield is the quantity of product you measure after you have done the reaction in the laboratory

Percent Yield

- The percent yield is defined as

$$
\% \text { yield }=\frac{\text { actual yield }}{\text { theoreticalyield }} \times 100 \%
$$

Example 3.11, (Cont'd)

Key Concepts

1. Use molar mass to relate

- Moles to mass
- Moles in solution; molarity
- Molecular formula to simplest formula

2. Use the formula of a compound to find percent composition or its equivalent.
3. Find the simplest formula from chemical analysis data.
4. Balance chemical equations by inspection

Key Concepts, (Cont'd)

5. Use a balanced equation to

- Relate masses of products and reactants
- Find the limiting reactant, theoretical yield and percent yield

