

BROOKS/COLE

Mass Relations in Chemistry: Stoichiometry

Edward J. Neth • University of Connecticut

Outline • The Mole · The mole and solutions: Molarity Mass Relations in Chemical Formulas Mass Relations in Reactions

Counting

- · Different specialties use different counting numbers
 - · Doughnuts and eggs are sold by the dozen
 - · Pennies are wrapped in rolls of 50
 - · ATMs dispense money in units of \$20 but Congress spends by the million

Avogadro's Number: 1 mole = 6.022 X 10²³ Particles

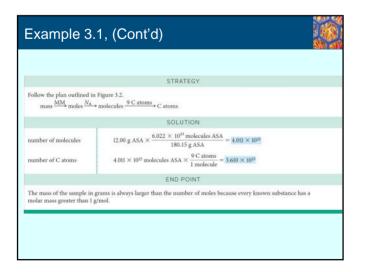
- · There is a number that corresponds to a collection of atoms where the mass of that collection in grams is numerically equal to the same number in amu, for a single atom
- N_A = 6.022 X 10²³
- · Number of atoms of an element in a sample whose mass is numerically equal to the mass of a single atom
- By knowing Avogadro's number and the atomic mass, it is now possible to calculate the mass of a single atom in grams

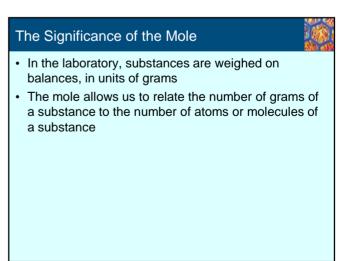
The Mole

- A mole is Avogadro's number of items
- The mole is a very large number
 - Avogadro's number of pennies is enough to pay all the expenses of the United States for a billion years or more, without accounting for inflation
- · The molar mass
 - The molar mass, MM, in grams/mole, is numerically equal to the sum of the masses (in amu) of the atoms in the formula

Significance of the Mole

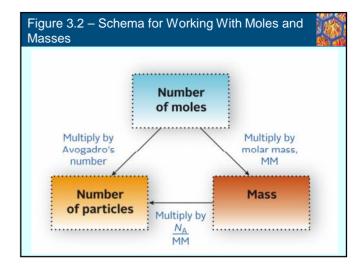
By knowing Avogadro's number and the atomic mass, it is now possible to calculate the mass of a single atom in grams


Molar Masses of Some Substances


Formula	Sum of Atomic Masses	Molar Mass, MM
0	16.00 amu	16.00 g/mol
O ₂	2(16.00 amu) = 32.00 amu	32.00 g/mol
H ₂ O	2(1.008 amu) + 16.00 amu = 18.02 amu	18.02 g/mol
NaCl	22.99 amu + 35.45 amu = 58.44 amu	58.44 g/mol

Acetylsalicylic acid, C9H8O4, is the active ingredient o	fasnirin
What is the mass in grams of 0.509 moles of acet	
A one-gram sample of aspirin contains 75.2% by in the sample?	mass of $\mathrm{C}_{\mathrm{p}}\mathrm{H}_{\mathrm{d}}\mathrm{O}_{4}.$ How many moles of acetylsalicylic acid are
G How many molecules of C ₉ H ₄ O ₄ are there in 12.0	0 g of acetylsalicylic acid? How many carbon atoms?

Example 3.1, (Cont'd)				
		1951/1051 1901		
۲				
	ANALYSIS			
Information given:	moles of acetylsalicylic acid (0.509) formula for acetylsalicylic acid $(C_9H_8O_4)$			
Information implied:	molar mass (MM) of acetylsalicylic acid			
Asked for:	mass of acetylsalicylic acid (ASA)			
1	STRATEGY			
Substitute into Equation 3.1 mass = $MM \times n$				
	SOLUTION			
MM of C ₉ H ₈ O ₄ mass	9(12.01) + 8(1.008) + 4(16.00) = 180.15 g/mol mass = MM × n = 0.509 mol × $\frac{180.15 g}{1 mol} = 91.7 g$			


Exa	ample 3.1,	(Cont'd)	
	6		
		ANALYSIS	
	Information given:	mass of aspirin (1.000 g) mass percent of ASA in aspirin (75.2%) formula for acetylsalicylic acid (C ₆ H ₄ O ₄)	
	Information implied:	molar mass (MM) of acetylsalicylic acid	
	Asked for:	moles of ASA in the sample of acetylsalicylic acid	
		STRATEGY	
	Follow the plan outlined in aspirin $\xrightarrow{9_0}$ mass \xrightarrow{MM}		
		SOLUTION	
	moles ASA	$1.00 \text{ g aspirin} \times \frac{75.2 \text{ g ASA}}{100 \text{ g sspirin}} \times \frac{1 \text{ mol ASA}}{180.15 \text{ g ASA}} = 4.17 \times 10^{-3} \text{ mol ASA}$	
	0		
		ANALYSIS	
	Information given:	mass of ASA (12.00 g) formula for a cetylsalicylic acid $(\mathrm{C}_{s}\mathrm{H}_{4}\mathrm{O}_{4})$	
	Information implied:	molar mass (MM) of acetylsalicylic acid Avogadro's number $(N_{\rm A})$	
	Asked for:	number of molecules of ASA number of carbon atoms continue	

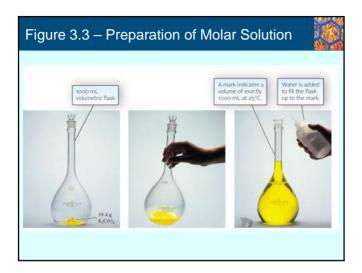
Mole-Gram Conversions

- m = MM X n
 - m = mass
 - MM = molar mass
 - n = number of moles

Reactions in the Laboratory

- Because water is common everywhere, most chemical reactions take place in aqueous solution
 - · Water is called the universal solvent
 - Three common types of reactions in solution:
 Precipitation reactions
 - Acid-base reactions
 - Oxidation-reduction reactions
- In Chapter 4, we will examine these reactions in detail – for now, we will look at the concentration of solutions in terms of their *molarity*

Solute Concentrations - Molarity


- · Definition of molarity
 - · Molarity = moles of solute/liters of solution
 - Symbol is M
 - Square brackets are used to indicate concentration in M
 - [Na+] = 1.0 M
- Consider a solution prepared from 1.20 mol of substance A, diluted to a total volume of 2.50 L
 - Concentration is 1.20 mol/2.50 L or 0.480 M

Additivity

- · Masses are additive; volumes are not
- The total mass of a solution is the sum of the mass of the solute and the solvent
- The total volume of a solution is not the sum of the volumes of the solute and solvent

Volumetric Glassware

- Volumetric pipets, burets and flasks are made so that they contain a known volume of liquid at a given temperature
- Preparing solutions with concentrations in M involves
 using volumetric glassware

Molarity as a Conversion Factor

- The molarity can be used to calculate
 - The number of moles of solute in a given volume of solution
 - The volume of solution containing a given number of moles of solute

Example 3	2
	.2
EXAMPLE 3.2	
	sively used in the manufacture of fertilizer. A bottle containing 75.0 mL of nitric acid solution
How many moles of H	NO3 are in the bottle?
A reaction needs 5.00 g	s of HNO3. How many mL of solution are required?
G Ten mL of water are ad	ded to the solution. What is the molarity of the resulting solution? (Assume volumes are additive.)
3	
$\mathbf{O}_{\mathbf{A}}$	ANALYSIS
	ANALTSIS
Information given:	V (75.0 mL) and M (6.0 M) of HNO ₅ in the bottle
Information implied:	$V\left(75.0~\mathrm{mL}\right)$ and $M\left(6.0~M\right)$ of HNO_{3} in the bottle
Information implied:	V (75.0 mL) and M (6.0 M) of HNO ₃ in the bottle molar mass (MM) of HNO ₃
Information implied: Asked for:	V (75.0 mL) and M (6.0 M) of HNO ₃ in the bottle molar mass (MM) of HNO ₃ moles of HNO ₃ in the bottle
Information given: Information implied: Asked for: 1. Do not forget to change 2. Use the molarity of HNK	V (75.0 mL) and M (6.0 M) of HNO ₃ in the bottle molar mass (MM) of HNO ₃ moles of HNO ₃ in the bottle STRATEGY the volume unit given (mL) to L.
Information implied: Asked for: 1. Do not forget to change	V (75.0 mL) and M (6.0 M) of HNO ₃ in the bottle molar mass (MM) of HNO ₃ moles of HNO ₃ in the bottle STRATEGY the volume unit given (mL) to L.

xample 3.2		
	SOLUTION	
moles HNO3	75.0 mL solution $\times \frac{1 \text{ L}}{1000 \text{ mL}} \times \frac{6.0 \text{ mol HNO}_3}{1 \text{ L solution}} = 0.45 \text{ mol}$	
•		
	ANALYSIS	
Information given:	V (75.0 mL) and M (6.0 $M)$ of HNO3 in the bottle mass of HNO3 required (5.00 g)	
Information implied:	molar mass (MM) of HNO3	
Asked for:	volume of HNO ₃ required	
-	STRATEGY	
 Use the molarity and the <u>6.0 mol HNO₃</u> <u>1 m</u> <u>1 L solution</u> <u>63.0</u> 2. Follow the plan: mass <u>MM</u> moles <u>M</u> 	2 g HNO ₃	
	SOLUTION	
volume HNO ₃	$5.00 \text{ g HNO}_3 \times \frac{1 \text{ mol HNO}_3}{63.02 \text{ g HNO}_3} \times \frac{1 \text{ L solution}}{6.0 \text{ mol HNO}_3} = 0.013 \text{ L} = 13 \text{ mL}$	

Example 3.2, (Cont'd)					
©					
	ANALYSIS				
Information given:	V (75.0 mL) and M (6.0 M) of HNO ₃ in the bottle volume of water added (10.00 mL) Assume volumes are additive.				
Information implied:	molar mass (MM) of HNO3				
Asked for:	molarity (M) of diluted solution				
1	STRATEGY				
	ange the number of moles of solute. It does change the volume of sol 2, Use (75.0 mL + 10.0 mL) as the total volume.	ution.			
	SOLUTION				
М	$\frac{0.45 \text{ mol}}{0.0750 \text{ L} + 0.0100/\text{L}} = 5.3 \text{ mol/L} = 5.3 \text{ M}$				
	END POINT				
The molarity of a solution do the same.	creases when water is added to the solution, but the moles of solute i	n solution remain			

Dissolving Ionic Solids	
 When an ionic solid is dissolved in a solvent, the ions separate from each other 	
• MgCl ₂ (s) Mg ²⁺ (aq) + 2 Cl ⁻ (aq)	
 The concentrations of ions are related to each ot by the formula of the compound: 	her
 Molarity MgCl₂ of = molarity of Mg²⁺ 	
 Molarity of Cl⁻ = 2 X molarity of MgCl₂ 	
 Total number of moles of ions per mole of Mg0 is 3 	

Determining Moles of Ions

• By knowing the charge on ions, the formula of a compound can be quickly determined

• The formula of the compound is key to determining the concentration of ions in solution

3	4	5	6	7	8	9	10	11	12
			Cr ³⁺	Mn ²⁺	Fe ²⁺ Fe ³⁺	Co ²⁺ Co ³⁺	Ni ²⁺	Cu ²⁺	Zn ²⁺
								Ag ⁺	Cd ²⁺
									Hg ²⁺

EXAMPLE 3.3	
	Cr ₂ O ₂ , is used in the tanning of leather. A flask containing 125 mL of solution is labeled
0.145 M K ₂ Cr ₂ O ₇ .	rgory, is used in the tanning of rearber. A mask containing 125 Int. of solution is labeled
O What is the molarity o	f each ion in solution?
	200 moles of K ⁺ is added to the solution. Assuming no volume change, what is the molarity
 A sample containing 0 of the new solution? 	200 moles of K ⁺ is added to the solution. Assuming no volume change, what is the molarity
of the new solution?	
of the new solution?	ANALYSIS

Example 3	.3, (Cont'd)
	STRATEGY
1. Distinguish between the	parent compound and the ions.
 Count the number of ion conversion factor. 	is in the parent compound (recall that it is the subscript of the ion), and use it as a
2 mol K ⁺ 1	
1 mol K ₂ Cr ₂ O ₇ 1 i	$mol K_2 Cr_2 O_7$
	SOLUTION
[K+]	$\frac{0.145 \ mol \ K_2 Cr_2 O_7}{1 \ L} \times \frac{2 \ mol \ K^*}{1 \ mol \ K_2 Cr_2 O_7} \approx 0.290 \ mol/L = 0.290 \ M$
[Cr ₂ O ₇ ³⁻]	$\frac{0.145 \text{ mol } K_2 \text{Cr}_2 \text{O}_7}{1 \text{ L}} \times \frac{1 \text{ mol } \text{Cr}_1 \text{O}_7^2}{1 \text{ mol } K_2 \text{Cr}_2 \text{O}_7} = 0.145 \text{ mol/L} = 0.145 \text{ M}$
6	
	ANALYSIS
Information given:	volume, V (125 mL), and molarity, M (0.145 M), of solution moles of K+ added (0.200)
Information implied:	number of each ion in the parent compound
Asked for:	molarity of $K_2Cr_3O_7$ after the addition of K^+ ions

Example	3.3, (Cont'd)	
	STRATEGY	
1. Use the molarity of H	K ⁺ found in (a) and substitute into Equation 3.2 to find the moles of K ⁺ initially.	
2. Find the moles of K ⁴	⁺ after the addition.	
3. Find [K ⁺] again by s	ubstituting into Equation 3.2.	
4. Find [K2Cr2O7] by re	elating [K*] to K2Cr2O7.	
5. The overall plan is: $[K^+_{initial}] \xrightarrow{V} (mo$	$ K^{+}\rangle_{intul} \xrightarrow{+0.200 \text{ mol } K^{+}} (\text{mol } K^{+})_{find} \xrightarrow{V} [K^{+}]_{find} \xrightarrow{-2 K^{+}/K_{2}Cr_{2}O_{7}} [K_{2}Cr_{2}O_{7}]_{find}$	
	SOLUTION	
(mol K ⁺) _{inital}	$0.125 \text{ L} \times \frac{0.290 \text{ mol K}^+}{1 \text{ L}} = 0.03625$	
(mol K ⁺) _{final}	0.03625 + 0.200 = 0.236	
[K*] _{final}	$\frac{0.236 \text{ mol K}^{+}}{0.125 \text{ L}} = 1.89 \text{ mol/L} = 1.89 \text{ M}$	
	$\frac{1.89 \text{ mol } \text{K}^+}{1 \text{ L}}$ × $\frac{1 \text{ mol } \text{K}_2 \text{Cr}_2 \text{O}_2}{2 \text{ mol } \text{K}^+}$ = 0.945 mol/L = 0.945 M	
[K ₂ Cr ₂ O ₂] _{fmil}		

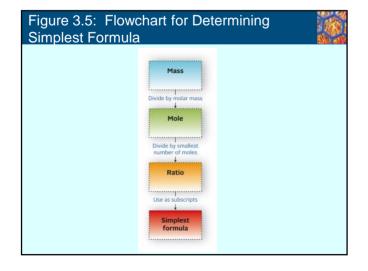
Chemical Formulas

- In Chapter 2, we learned that the chemical formula tells us the number of atoms of each element in a compound, whether that is a molecular compound or an ionic compound
- We can now combine that knowledge with the knowledge of molar mass to begin relating elements by mass

Mass Relations in Chemical Formulas

- · Percent composition from formula
 - The percent composition of a compound is stated as then number of grams of each element in 100 g of the compound
 - By knowing the formula, the mass percent of each element can be readily calculated

Exa	ample 3.4			
	EXAMPLE 3.4 GRAD	E0		
	Metallic iron is most often as silicon dioxide, SiO ₂ ,	extracted from hematite ore, which consists of iron(III) oxide mixed with impurities such	ch	
		cents of iron and oxygen in iron(III) oxide?		
	6 How many grams of it	on can be extracted from one kilogram of Fe ₂ O ₃ ?		
	How many metric ton	s of hematite ore, 66.4% Fe ₂ O ₃ , must be processed to produce one kilogram of iron?		
	(0)			
		ANALYSIS		
	Information given:	formula of the iron oxide (Fe ₂ O ₃)		
	Information implied:	molar mass (MM) of Fe ₂ O ₃		
	Asked for:	mass % of Fe and O in Fe ₂ O ₃		
		STRATEGY		
	n _{FerOy} subscript n	t of Fe follow the plan outlined below. Start with one mole of Fe ₂ O ₃ , $\frac{MM Fe_{-}}{mass Fe} \xrightarrow{MM Fe_2O_3}$ % element faxygen by difference. Note that the compound is made up of only two elements, Fe and O.		
		SOLUTION		
	mass % Fe	$\begin{split} 1 \mbox{ mol Fe}_{0}O_{1} \times & \frac{2 \mbox{ mol Fe}}{1 \mbox{ mol Fe}_{0}O_{1}} \times & \frac{55.85 \mbox{ g}}{1 \mbox{ mol Fe}} = 111.7 \mbox{ g Fe} \\ & \frac{111.7 \mbox{ g Fe}}{159.7 \mbox{ g Fe}O_{1}} \times & \frac{69.346}{69.346} \end{split}$		
	mass % O	mass % O = 100% - mass % Fe = 100.00% - 69.96% = 30.06% continued		

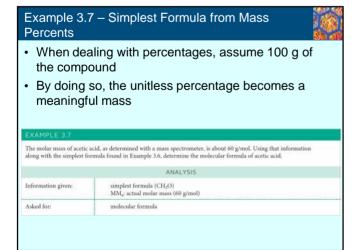

(b)	
Information given:	ANALYSIS.
	mass of Fe ₂ O ₃ (1.600 kg = 1.000 $\times 10^{2}$ g)
Information implied	from (a): mass % of Fe in Fe ₂ O ₃ (09.34% = 68.94 g Fe(100.05 g Fe ₂ O ₃)
Asked Sec.	mass of Fe obtained from 1.000 kg of Fe ₃ C ₃
	STRATEGY
stass of Fe = (cass Fe ₂ O)	(manFei100 g Fe ₂ O ₂)
	SOLUTION
raan Fe	$1.000 \times 10^7 g \mathrm{Pe}_5 D_7 \times \frac{49.96 g \mathrm{Fe}}{100 g \mathrm{Fe}_5 D_7} = 899.4 g \mathrm{Fe}$
(9	
	ANALYSIS
Information given-	mass % of FegO ₁ in the over (66.4% = 66.4 g FegO ₂ (100.0 g ore) mass of Fe nueded (1900 kg)
Information implied.	from (a), mass % of Fe in Fe ₂ O ₂ (68.94% $=$ 68.94% g Fe ₂ 000.00 g Fe ₂ O ₂) factor for converting metric tows to grams.
Asked for:	mass of hematitic needed to produce 1.00 kg of Pe
	STRATEGY
2. Shet with 1000 g of 74 03.94 g Te	
1 metric ton = 1 × 0	F SOLUTION
	$1000 \text{ g Pe} \times \frac{100 \text{ g Pe}/3}{40.94 \text{ g Pe}} \times \frac{100 \text{ g row}}{66.4 \text{ g Pe}/3} \times \frac{1 \text{ metric ion}}{1 \times 10^7 \text{ g}} = 2.6 \times 10^{-3} \text{ metric}$

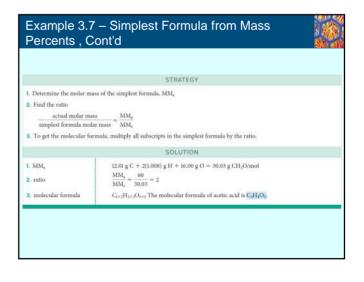
Chemical Analysis

- Experimentation can give data that lead to the determination of the formula of a compound
 - · Masses of elements in the compound
 - Mass percents of elements in the compound
 - Masses of products obtained from the reaction of a weighed sample of the compound

Simplest Formula from Chemical Analysis

- Often, the formula is not known, but data from chemical analysis is known
 - · Amount of each element in grams
 - Can be used to determine the simplest formula
 Smallest whole-number ratio of atoms in a compound
 - H₂O is the simplest formula and the molecular formula for water
 - HO is the simplest formula for hydrogen peroxide; the molecular formula is ${\rm H_2O_2}$


0.170 mol 0.170 mol 0.170 mol 0.170 Since we need smallest <i>whole</i> number ratios, we multiply all ratios by 2. 2 K : 2 Cr : 7 O	Example (3.5, (Cont'd)
ratios $K_{1} \underbrace{\begin{array}{l} 0.170 \text{ mol} \\ G_{1}(10 \text{ mol}) = I_{1} \\ Since we need smallest whole number ratios, we multiply all ratios by 2. \\ 2 \text{ K}; 2 \text{ Cr}; 7 \text{ O} \\ \hline \text{END POINT} \\ L \text{ A mole ratio of 100 A}; 100 \text{ B}; 3.33 \text{ C would imply a formula } A_{3}B_{5}C_{30}. \text{ If the mole ratio were 100 A}; 2.50 \text{ B}; 5.50 \text{ C}, \text{ the subscripts.} \\ \hline \end{array}}$		$\Omega - \frac{9.52 \text{ g O}}{1000} = 0.595 \text{ mol}$
END POINT 1. A mole ratio of 100 A: 1.00 B: 3.33 C would imply a formula A _i B ₂ C ₂₀ . If the mole ratio were 1.00 A: 2.50 B: 5.50 C, the formula would be A ₂ B ₂ C ₂₀ . In general, multiply through by the smallest whole number that will give integers for all the subscripts.	ratios	$\begin{array}{l} K_{1} & \frac{0.170 \text{ mol}}{0.170 \text{ mol}} = 1, & \text{Cr.} & \frac{0.170 \text{ mol}}{0.170 \text{ mol}} = 1, & \text{Or.} & \frac{0.595 \text{ mol}}{0.170 \text{ mol}} = 3.5 \\ \text{Since we need smallest whole number ratios, we multiply all ratios by 2. \end{array}$
 A mole ratio of L00 A : L00 B : 3.33 C would imply a formula A₂B₂C₉₀. If the mole ratio were L00 A: 2.50 B : 5.50 C, the formula would be A₂B₂C₄₀. In general, multiply through by the smallest whole number that will give integers for all the subscripts. 	simplest formula	K ₂ Cr ₂ O ₇
formula would be $A_2B_3C_{11}$. In general, multiply through by the smallest whole number that will give integers for all the subscripts.		END POINT
	formula would be A2B subscripts.	$\mathrm{C}_{\mathrm{B}}.$ In general, multiply through by the smallest whole number that will give integers for all the


Example 3	
EXAMPLE 3.6	
	negar its sour taste is acetic acid, which contains the elements carbon, hydrogen, and oxygen. re burned in air, 7.33 g of CO ₂ and 3.00 g of water are obtained. What is the simplest formula
	ANALYSIS
Information given:	elements in acetic acid (C, H, and O) mass of acetic acid (5.00 g) result of combustion analysis (7.33 g CO ₂ , 3.00 g H ₂ O)
Information implied:	molar masses (MM) of CO ₂ and H ₂ O
Asked for:	simplest formula of acetic acid
	STRATEGY
$\frac{12.01 \text{ g C}}{44.01 \text{ g CO}_2} = \frac{2(1.0)}{18.02}$ 2. Find the mass of O by displaying the mass of O by disp	2 g H ₂ O ifference: s of C + mass of H + mass of O

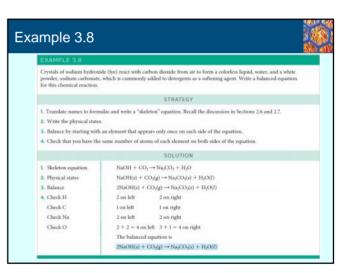
	SOLUTION	
1. mass of C	$7.33 \text{ g CO}_2 \times \frac{12.01 \text{ g C}}{44.01 \text{ g CO}_2} = 2.00 \text{ g C}$	
mass of H	$3.00 \text{ g H}_2\text{O} \times \frac{2(1.008) \text{ g H}}{18.02 \text{ g H}_2\text{O}} = 0.336 \text{ g H}$	
2. mass of O	mass of $O = mass$ of sample - (mass of $C + mass$ of H)	
3. mol of each element	$ \begin{array}{l} = 5.00 \ g - (2.00 \ g + 0.336 \ g) = 2.66 \ g \\ C; \ \displaystyle \frac{2.00 \ g \ C}{12.01 \ g'mol} = 0.167; \ H; \ \displaystyle \frac{0.336 \ g \ H}{1.008 \ g'mol} = 0.333; \ O; \ \displaystyle \frac{2.66 \ g \ O}{16.00 \ g/mol} = 0.366 \end{array} $	
ratios	C: $\frac{0.167 \text{ mol}}{0.166 \text{ mol}} = 1$; H: $\frac{0.333 \text{ mol}}{0.167 \text{ mol}} = 2$; O: $\frac{0.166 \text{ mol}}{0.166 \text{ mol}} = 1$	
simplest formula	Using the ratios as subscripts, the simplest formula is CH2O.	

Molecular Formula from Simplest Formula

- The relationship between simplest and molecular formula is a whole number
- The whole number relates the molecular mass to the mass of the simplest formula as well

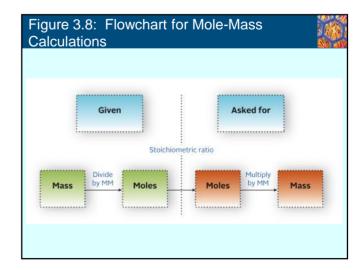
Mass Relations in Reactions

8


- Chemical equations represent chemical reactions
 - Reactants appear on the left
 - Products appear on the right
 - Equation must be balanced
 - Number of atoms of each element on the left ...
 - ...equals the number of atoms of each element on the right

How are Equations Written?

- We must know the reactants and the products for a reaction for which an equation is to be written
 - It is often necessary to do an experiment and an analysis to determine the products of a reaction
 - Determining the products is often time consuming and difficult


Writing Chemical Equations

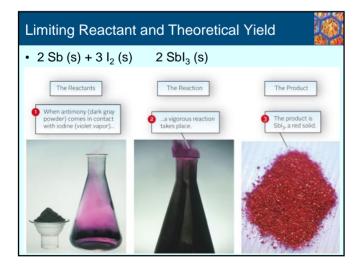
- 1. Write a skeleton equation for the reaction.
- 2. Indicate the physical state of each reactant and product.
- 3. Balance the equation
 - Only the coefficients can be changed; subscripts are fixed by chemical nature of the reactants and products
 - It is best to balance atoms that appear only once on each side of the equation first

Mass Relations from Equations

- The coefficients of a balanced equation represent the numbers of moles of reactants and products
 - + 2 N_2H_4 (I) + N_2O_4 (I) 3 N_2 (g) + 4 H_2O (I)
 - + 2 mol N₂H₄ + 1 mol N₂O₄ 3 mol N₂ + 4 mol H₂O

Example 3.9

EXAMPLE 3:


Ammonia is used to make fertilizers for lawns and gardens by reacting nitrogen gas with hydrogen gas. The balanced equation for the reaction is

- $N_2(g)+3H_2(g) \longrightarrow 2NH_3(g)$ O How many moles of ammonia are formed when 1.34 mol of nitrogen react?
- 6 How many grams of hydrogen are required to produce 2.75 \times 10³ g of ammonia?
- G How many molecules of ammonia are formed when 2.92 g of hydrogen react?
- O How many grams of ammonia are produced when 15.0 L of air (79% by volume nitrogen) react with an excess of hydrogen? The density of nitrogen at the conditions of the reaction is 1.25 g/L.

Example 3	.9, (Cont'd)	
	STRATEGY	
For all parts of this examp	le, follow the schematic pathway shown in Figure 3.8.	
۲		
	ANALYSIS	
Information given:	balanced equation: $[N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)]$ moles N_2 (1.34)	
Asked for:	mol NH, formed	
	SOLUTION	
mol NH3	$ \begin{array}{l} \operatorname{mol} \operatorname{H}_2 \longrightarrow \operatorname{mol} \operatorname{NH}_3 \\ \\ \mathrm{1.34 \ mol} \ \operatorname{H}_2 \times \frac{2 \ \operatorname{mol} \operatorname{NH}_3}{1 \ \operatorname{mol} \ \operatorname{N2}_2} = 2.68 \ \operatorname{mol} \operatorname{NH}_3 \end{array} $	
	E	

•	
	ANALYSIS
Information given:	mass of ammonia $(2.75 \times 10^3 \text{ g})$ balanced equation: $[N_2(g) \rightarrow 3H_2(g) \rightarrow 2NH_3(g)]$
Information Implied:	molar masses of NH ₃ and H ₃
Asked for:	mass of H2 needed
	SOLUTION
mass H ₂	$\begin{array}{l} {\rm mass}\; {\rm NH}_{3} \rightarrow {\rm mod}\; {\rm NH}_{1} \rightarrow {\rm mod}\; {\rm H}_{2} \rightarrow {\rm mass}\; {\rm H}_{2} \\ {\rm 2.75} \times 10^{9}\; g\; {\rm NH}_{2} \times \frac{1\; {\rm mod}\; {\rm NH}_{3}}{17.03\; g\; {\rm NH}_{1}} \times \frac{3\; {\rm mod}\; {\rm H}_{2}}{2\; {\rm mod}\; {\rm NH}_{3}} \times \frac{2.016\; g\; {\rm H}_{2}}{1\; {\rm mod}\; {\rm H}_{2}} \\ \end{array}$
9	
	ANALYSIS
Information given:	mass of H ₂ (2.92 g) balanced equation: $[N_2(g) + 3H_2(g) \rightarrow 2NH_2(g)]$
Information implied:	molar mass of H_2 Avogadro's number (N_A)
Asked for:	molecules of NH ₃ produced
	SOLUTION
molecules NH ₂	$\begin{split} & \text{mass} \ H_2 \rightarrow \text{mol} \ H_1 \rightarrow \text{mol} \ \text{NH}_1 \frac{N_{A \rightarrow}}{3} \text{ molecules} \ \text{NH}_1 \\ & 2.92 \ \text{g} \ H_1 \times \frac{1}{5.016} \frac{\text{mol}}{\text{H}_1} \times \frac{2 \text{ mol} \ \text{NH}_1}{3 \text{ mol} \ \text{H}_2} \times \frac{6.022 \times 10^{10} \text{ molecules}}{1 \text{ mol} \ \text{NH}_5} - \frac{3.81 \times 10^{20}}{3.81 \times 10^{20}} \end{split}$

Example 3	.9, (Cont'd)
a	
	ANALYSIS
Information given:	balanced equation: $[N_2(g) + 3H_3(g) \rightarrow 2NH_3(g)]$ V_{40} (15.0 L); % by volume of N_2 in air (79%); density, d, of N_2 (1.25 g/L)
Information implied:	molar masses of N2 and NH3
Asked for:	mass of NH ₃ produced
	SOLUTION
mass NH3	$ \begin{array}{c} V_{ab} \xrightarrow{\% N_{3}} V_{N_{2}} \xrightarrow{\text{density}} \max N_{2} \rightarrow \text{mol } N_{2} \rightarrow \text{mol } NH_{3} \rightarrow \text{mass } NH_{3} \\ \text{15.0 L air} \times \frac{79 \text{ L } N_{2}}{100 \text{ L air}} \times \frac{1.25 \text{ g } N_{1}}{1 \text{ L } N_{2}} \times \frac{1 \text{ mol } N_{2}}{28.02 \text{ g } N_{2}} \times \frac{2 \text{ mol } NH_{3}}{1 \text{ mol } N_{2}} \times \frac{17.05 \text{ g } \text{ NH}_{3}}{1 \text{ mol } NH_{3}} = 18 \text{ g } \text{ NH}_{3} \end{array} $

Interpreting by Mass

- · Reactants
 - One mole Sb (243.6 g)
 - Three moles I₂ (761.4 g)
 - Two moles Sbl₃ (1005.0 g)
- · All of the reactants are converted to product

In the Laboratory

- Reactants are usually not mixed in exact ratios
- An excess of one reactant is often used
 - · Usually the less (or least) expensive reactant
 - One reactant will then limit the amount of product that will form

$\mbox{Sb-I}_2$ with a limiting reactant

- Suppose the mixture is
- 3.00 mol Sb
- 3.00 mol l₂
- · In this case
 - 1.00 mol Sb will be left over
 - 2.00 mol of Sb will be used
 - React with 3.00 mol $\rm I_2$
 - + Form 2.00 mol Sbl_3

Approach to Limiting Reactant Problems

- 1. Calculate the amount of product that will form if the first reactant were completely consumed.
- 2. Repeat the calculation for the second reactant in the same way.
- 3. Choose the smaller amount of product and relate it to the reactant that produced it. This is the limiting reactant and the resulting amount of product is the *theoretical yield*.
- 4. From the theoretical yield, determine how much of the reactant in excess is used, and subtract from the starting amount.

Example 3	9.10	
EXAMPLE 3.10		
Consider the reaction		
$2Sb(s) + 3I_2(s)$	$\rightarrow 2SbI_3(s)$	
Determine the limiting re-	actant and the theoretical yield when	
1.20 mol of Sb and 2.4	10 mol of I2 are mixed.	
(b) 1.20 g of Sb and 2.40	g of I2 are mixed. What mass of excess reactant is left when the reaction is complete?	
(a)		
	ANALYSIS	
Information given:	moles of each reactant: Sb (1.20), I ₃ (2.40) balanced equation: $[2Sb(s) + 3I_2(s) \rightarrow 2SbI_3(s)]$	
Asked for:	limiting reactant theoretical yield	continued
	1	

Example 3.10, (Cont'd)		
	STRATEGY	
$\mathrm{mol}\;\mathrm{Sb} \longrightarrow \mathrm{mol}\;\mathrm{SbI}_3;$	by first assuming Sb is limiting, and then assuming I ₂ is limiting. mol $I_1 \rightarrow mol$ SbI ₃ he smaller amount of SbI ₃ is limiting, and the smaller amount of SbI ₃ is the theoretical yield.	
	SOLUTION	
mol SbI3 limiting reactant theoretical yield	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	
b	ANALYSIS	
Information given:	mass of each reactant: $5b$ (1.20 g), I_2 (2.40 g) balanced equation: $(25b(s) + 3j_s(s) \rightarrow 25bI_j(s))$	
Information implied:	molar masses (MM) of SbI ₃ and I ₂	
Asked for:	limiting reactant theoretical yield mass of excess reactant not used up	

Example 3.	10, (Cont'd)
	STRATEGY
1. Follow the plan outline	l in Figure 3.8 and convert mass of Sb and mass of I ₂ to mol SbI ₃ .
2. The smaller number of limiting reactant.	moles Sbl ₃ obtained is the theoretical yield. The reactant that yields the smaller amount is the
3. Convert moles limiting	reactant to mass of excess reactant. That is the mass of excess reactant consumed in the reaction
4. Mass of excess reactant	not used up = mass of excess reactant initially - mass excess reactant consumed
	SOLUTION
1. mol SbI ₃	$1.20~g~Sb\times \frac{1~mol~Sb}{121.8~g~Sb}\times \frac{2~mol~SbI_{3}}{2~mol~Sb}=0.00985~mol~SbI_{3}$
	$2.40 \text{ g } I_2 \times \frac{1 \text{ mol } I_2}{253.8 \text{ g } I_2} \times \frac{2 \text{ mol } \text{Sb} I_3}{3 \text{ mol } I_2} = 0.006304 \text{ mol } \text{Sb} I_3$
2. limiting reactant	0.006304 mol (I_2 limiting) $<$ 0.00985 mol (Sb limiting); thus $\overline{I_2}$ is the limiting reactant.
theoretical yield	$0.006304 \ \mathrm{mol} < 0.00985 \ \mathrm{mol} \qquad \mathrm{The \ theoretical \ yield \ is \ } 0.006304 \ \mathrm{mol} \ (3.17 \ \mathrm{g}) \ \mathrm{SbI}_3.$
	The reactant in excess is Sb.
3. mass Sb used up	$2.40~g~I_2 \times \frac{1~mol~I_2}{253.8~g~I_2} \times \frac{2~mol~Sb}{3~mol~I_2} \times \frac{121.8~g~Sb}{1~mol~Sb} = 0.768~g~Sb$
4. mass unreacted	mass unreacted = mass present initially - mass used up = $1.20 \text{ g} - 0.768 \text{ g} = 0.43 \text{ g}$

10

Verifying the Limiting Reactant

 Once the limiting reactant has completely reacted, there is no more left to react with the excess of the other reactant

The Pancake Analogy

- Consider a recipe for pancakes. To make 16
 pancakes, you need
 - 2 cups flour
 - 2 teaspoons baking powder
 - 2 eggs
 - 1 cup milk

Pancakes

- Now start with
 - · 2 cups flour
 - · 2 teaspoons baking powder
 - 1 egg
 - 1 cup milk
- It is clear that the egg will limit you to 8 pancakes and that you'll have a cup of flour, a teaspoon of baking powder and a half a cup of milk left over

Pancakes

• The egg is the limiting reactant and the theoretical yield is 8 pancakes

Experimental Yield

- Experimental yields are always lower than theoretical yields
 - · Some product is lost to competing reactions
 - Some product is lost to handling
 - Some product may be lost in separating it from the reaction mixture
- The *actual yield* is the quantity of product you measure after you have done the reaction in the laboratory

Percent Yield The percent yield is defined as % yield = $\frac{\text{actual yield}}{\text{theoretical yield}} \times 100\%$

Example 3.11		
EXAMPLE 3.11		
Consider again the reaction $2Sb(s) + 3I_2(s) \longrightarrow 1$	n discussed in Example 3.10: 2SbI ₃ (3) e percent yield is 78.2%. How many grams of SbI ₅ are formed?	
	ANALYSIS	
Information given:	From Example 3.10a, theoretical yield (1.20 mol) percent yield (78.2%)	
Asked for:	mass SbI ₃ actually obtained	
	STRATEGY	
1. Substitute into Equation % yield = $\frac{\text{actual yi}}{\text{theoretical}}$		continued

Example 3.11, (Cont'd)		
	SOLUTION	
actual yield mass SbI ₃	$\begin{split} 78.2\% &= \frac{actual yield}{1.20 \text{ mol}1} \times 100\% \text{ actual yield} = 0.938 \text{ mol Sbl}_3 \\ 0.938 \text{ mol Sbl}_5 \times \frac{502.5 \text{ g Sbl}_2}{1 \text{ mol Sbl}_3} = 472 \text{ g} \end{split}$	
	END POINT	
If your actual yie	ld is larger than your theoretical yield, something's wrong!	

Key Concepts

- 1. Use molar mass to relate
 - Moles to mass
 - Moles in solution; molarity
 - Molecular formula to simplest formula
- 2. Use the formula of a compound to find percent composition or its equivalent.
- 3. Find the simplest formula from chemical analysis data.
- 4. Balance chemical equations by inspection

Key Concepts, (Cont'd)

- 5. Use a balanced equation to
 - Relate masses of products and reactants
 - Find the limiting reactant, theoretical yield and percent yield