

Outline	
 Precipitation Reactions Acid-Base Reactions	
Oxidation-Reduction Reactions	

Solubility of Ionic Compounds in Water

- When an ionic compound dissolves in water, two forces compete
 - The attractive forces between the ions in the compound
 - The attractive forces between the water and the ions

Electrostatic Forces If the force of attraction between water molecules

- and the ions predominates, the compound will be soluble in water
- If the force of attraction between the ions in the compound predominates, the compound will be insoluble in water

Precipitation

- Precipitation in chemical reactions is the formation of a solid where no solid existed before reaction
- Precipitation is the reverse of solubility, where a solid dissolves in a solvent to produce a solution

Will it Dissolve?

- Solubility cannot be determined by first principles
- Solubility can be classified by anion and cation type
 - Soluble compounds dissolve in water
 - Insoluble compounds do not dissolve

Precipitates

- Precipitates are called *insoluble* they do not dissolve in solution
- · Precipitation of an insoluble solid
 - Mix a solution of nickel(II) chloride with one of sodium hydroxide
 - A solid forms: Ni(OH)₂ (s)

Figure 4.2 – Precipitation Diagram						
	NO3 ⁻	CL	SO4 ²⁻	OH-	CO3 ²⁻	PO4 ³⁻
Group 1 cations and NH4 ⁺	NO3		304-		03-	P04
Group 2 cations			BaSO ₄	Mg(OH) ₂		
Transition metal cations, ${\rm Pb}^{2*}$ and ${\rm Hg_2}^{2*}$		AgCl* PbCl ₂ * Hg ₂ Cl ₂ *	PbSO ₄ Ag ₂ SO ₄			
	 The bro insolut 		l iodides o	of these cat	tions are a	ilso
		Hg ₂ Cl ₂ *	STREET COLORD	of these cat	tions are a	ilso

Solubility Trends

- From the diagram, we see that *some compounds are mostly soluble*
 - Compounds of Group 1 and NH_4^+ cations
 - All nitrates
 - Most chlorides, except for AgCl, PbCl₂, Hg₂Cl₂
 - Most sulfates, except for BaSO₄, PbSO₄, Ag₂SO₄

Solubilities Trends

- Some compounds are mostly insoluble
 - Carbonates and phosphates, except for the Group I and ammonium
 - Hydroxides, except for the Group 1, Group 2 and ammonium
 - Mg(OH)₂ is insoluble

Working Solubility Problems

• By knowing the rules expressed in Figure 4.2, we can predict what mixtures will precipitate, and what compounds will form

Example 4.	1	Net Ionic Equations
 (a) Cu(NO₃)₂ and (NH₄)₂S0 1. Follow the schematic dia 	STRATEGY	 Consider the precipitation of CaCO₃ from solutions o CaCl₂ and Na₂CO₃ Reactants: Ca²⁺, Cl⁻, Na⁺ and CO₃²⁻ Products: CaCO₃, Na⁺ and Cl⁻ Two of the ions are unchanged These are spectator ions
	SOLUTION	• Net ionic equation: leave out the spectator ions
 (a) Ions in solution Possible precipitates Solubility (b) Ions in solution Possible precipitates Solubility 	$\label{eq:cu2} Cu^{2*} \mbox{ and } NO_3^{-} \mbox{ from } Cu(NO_3)_2; NH_4^{+} \mbox{ and } SO_4^{2-} \mbox{ from } (NH_4)_3 SO_4 \\ CuSO_4 \mbox{ and } NH_4 NO_3 \\ \mbox{ Both are soluble, no precipitate forms} \\ Fe^{+*} \mbox{ and } Cl^{-} \mbox{ from } Fcl_3; Ag^{+} \mbox{ and } NO_3^{-} \mbox{ from } AgNO_3 \\ AgCl \mbox{ and } Fc(NO_3)_2 \\ \mbox{ Fc}(NO_3)_3 \mbox{ is soluble, } AgCl \mbox{ is insoluble. } AgCl \mbox{ precipitates.} \\ \end{tabular}$	• Ca ²⁺ (aq) + CO ₃ ²⁻ (aq)→ CaCO ₃ (s)

Net Ionic Equations

- · Must follow the rules for equations
 - · Atoms must balance
 - · Charges must balance
 - · Show only the ions that react

Example 4.	2, (Cont'd)
	SOLUTION
(b) Ions in solution Possible precipitates Solubility Net ionic equation	Ba ²⁺ and OH ⁻ from Ba(OH) ₅ Mg ²⁺ and SO ₄ ²⁻ from MgSO ₄ Mg(OH) ₂ and BaSO ₄ Both BaSO ₄ and Mg(OH) ₂ are insoluble. Mg ²⁺ (aq) + 2OH ⁻ (aq) \rightarrow Mg(OH) ₂ (s)

 $\mathrm{Ba^{2+}}(aq) + \mathrm{SO_4^{2-}}(aq) \longrightarrow \mathrm{BaSO_4}(s)$

 $\rm (NH_4)_2CO_3$ and $\rm K_3PO_4$ Both (NH_4)_2CO_3 and $\rm K_3PO_4$ are soluble.

no reaction

(c) Ions in solution Possible precipitates

Solubility Net ionic equation $\rm NH_{4}^{+}$ and $\rm PO_{4}^{3-}$ from $\rm (NH_{4})_{3}PO_{42}$ K+ and $\rm CO_{3}^{2-}$ from $\rm K_{2}CO_{3}$

Why Write Net Ionic Equations?

Net ionic equations

- Focus attention on the reaction
- Simplify calculations
- We will use net ionic equations from now on

3
ED
sodium hydroxide and iron(III) nitrate are mixed, a red precipitate forms. ion for the reaction. M iron(III) nitrate is required to produce 0.886 g of precipitate?
cipitate are formed when 50.00 mL of 0.200 M NaOH and 30.00 mL of 0.125 M Fe(NO ₃) ₃ are mixed
ANALYSIS
reactant compounds [NaOH and Fe(NO3)]
net ionic equation
STRATEGY
iagram in Figure 4.3 to determine possible precipitates. iagram (Figure 4.2) to determine whether the possible precipitates are soluble or insoluble. ation. Start with the product.

Example 4		
	SOLUTION	
Ions in solution	$\mathrm{Na^{*}}$ and $\mathrm{OH^{-}}$ from NaOH; $\mathrm{Fe^{3*}}$ and $\mathrm{NO_{3}^{-}}$ from Fe(NO_{3})_{3}	
Possible precipitates	Fe(OH)3 and NaNO3	
Solubility	Fe(OH)3 is insoluble and forms a precipitate.	
Net ionic equation	$\operatorname{Fe}^{3+}(aq) + 3\operatorname{OH}^{-}(aq) \rightarrow \operatorname{Fe}(\operatorname{OH})_{3}(s)$	
b		
	ANALYSIS	
Information given:	net ionic equation from (a): $[Fe^{3+}(aq) + 3OH^{-}(aq) \rightarrow Fe(OH)_{3}(s)]$ mass of precipitate (0.886 g); molarity of $Fe(NO_{3})_{3}$ (0.136 M)	
Information implied:	molarity of reacting ion, Fe ¹⁺ molar mass of precipitate	
Asked for:	volume of Fe(NO3)) used in the reaction	continues

xample 4.3, (Cont'd)	
	STRATEGY
Reverse the pathway sho	
mass Fe(OH) ₃ \rightarrow mol ppt \rightarrow mol ion \rightarrow mol of parent compound \rightarrow V of parent compound
	SOLUTION
mol Fe(NO ₃) ₃	$0.886 \text{ g Fe(OH)}_3 \times \frac{1 \text{ mol Fe(OH)}_3}{106.87 \text{ g Fe(OH)}_3} \times \frac{1 \text{ mol Fe}^{3+}}{1 \text{ mol Fe(OH)}_3} \times \frac{1 \text{ mol Fe(NO_3)}_3}{1 \text{ mol Fe}^{3+}} = 0.00829$
ViteNOdi	$V = \frac{\text{mol}}{M} = \frac{0.00829 \text{ mol}}{0.136 \text{ mol}/L} = \frac{0.0610 \text{ L}}{0.0610 \text{ L}}$
6	
	ANALYSIS
Information given:	net ionic equation from (a): $[Fe^{i*}(aq) + 3OH^{-*}(aq) \rightarrow Fe(OH)_{j}(s)]$ volume (50.00 mL) and molarity (0.200 M) of NaOH volume (30.00 mL) and molarity (0.125 M) of Fe(NO ₃) ₃
Information implied:	number of moles of reacting ions, Fe^{j+} and OH^- Data for moles of both reactants is given, making this a limiting reactant problem.
Asked for:	mass of precipitate formed

Example 4	4.3, (Cont'd)
	STRATEGY
mol NaOH (V >	in Figure 4.6 for both NaOH and Fe(NO ₃) ₃ to obtain moles of precipitate formed. $\leq M$ \rightarrow mol OH \rightarrow mol ppt Fe(NO ₃) ₃ ($V \times M$) \rightarrow mol Fe ³⁺ \rightarrow mol ppt number of moles and convert moles to mass.
	SOLUTION
mol ppt if NaOH limiting	$0.0500 \text{ L} \times 0.200 \frac{\text{mol NaOH}}{\text{L}} \times \frac{1 \text{ mol OH}^-}{1 \text{ mol NaOH}} \times \frac{1 \text{ mol Fe(OH)}_2}{3 \text{ mol OH}^-} = 0.00333 \text{ mol Fe(OH)}_3$
mol ppt if Fe(NO ₃) ₃ limiting	$0.0300 \ L \times 0.125 \ \frac{\text{mol Fe}(NO_{3})_{3}}{L} \times \frac{1 \ \text{mol Fe}^{3+}}{1 \ \text{mol Fe}(NO_{3})_{3}} \times \frac{1 \ \text{mol Fe}(OH)_{3}}{1 \ \text{mol Fe}^{3+}} = 0.00375 \ \text{mol Fe}(OH)_{3} = 0.00375 \ \text{mol Fe}(OH)_{3} = 0.00375 \ \text{mol Fe}^{3+} =$
Theoretical yield	$0.00333 \text{ mol} < 0.00375 \text{ mol}; 0.00333 \text{ mol} \text{ Fe(OH)}_3$ is obtained
Fe(OH)3	$0.00333 \text{ mol} \times \frac{106.87 \text{ g}}{1 \text{ mol}} = 0.356 \text{ g}$

Strong and Weak Acids and Bases

- Strong acids ionize completely to H⁺
 - HCl (aq) \rightarrow H⁺ (aq) + Cl⁻ (aq)
 - In a solution of 1.0 M HCl, there is 1M $\rm H^{\scriptscriptstyle +}$ and 1M $\rm Cl^{\scriptscriptstyle -}$
 - · No HCl is left un-ionized
 - Other strong acids ionize in similar fashion

The Double Arrow Notation (⇐)

- Some equations use a double arrow rather than a single arrow
- Note that the double arrow points in both directions
- For now, the double arrow indicates that a reaction does not proceed completely to the right

Weak Acids

- · Weak acids ionize only partially
 - HB (aq) \rightleftharpoons H⁺ (aq) + B⁻ (aq)
 - HF (aq) *⇒* H⁺ (aq) + F⁻ (aq)
- · Commonly, weak acids are 5% ionized or less

Strong Bases

- Strong bases ionize completely to OH-
 - NaOH (s) \rightarrow Na⁺ (aq) + OH⁻ (aq)
 - $Ca(OH)_2 (s) \rightarrow Ca^{2+} (aq) + 2 OH^{-} (aq)$

Strong Acids and Bases

Acid	Name of Acid	Base	Name of Base
нсі	Hydrochloric acid	LIOH	Lithium hydroxide
HBr	Hydrobromic acid	NaOH	Sodium hydroxide
н	Hydriodic acid	КОН	Potassium hydroxide
HNO3	Nitric acid	Ca(OH) ₂	Calcium hydroxide
HCIO ₄	Perchloric acid	Sr(OH) ₂	Strontium hydroxide
H ₂ SO ₄	Sulfuric acid	Ba(OH) ₂	Barium hydroxide

Weak Bases

- Weak bases react with water to form OH-, but the reaction does not go to completion
 - NH_3 (aq) + $H_2O \rightleftharpoons NH_4^+$ (aq) + OH^- (aq)
- CH_3NH_2 (aq) + $H_2O \rightleftharpoons CH_3NH_3^+$ (aq) + OH^- (aq)
- Commonly, weak bases are 5% ionized or less

Weak Acid-Strong Base Reaction Two steps

- HB (aq) *⇒* H⁺ (aq) + B⁻ (aq)
- $H^+(aq) + OH^-(aq) \rightarrow H_2O$
- Overall reaction
- HB (aq) + OH⁻ (aq) \rightarrow B⁻ (aq) + H₂O

Weak Base-Strong Acid Reaction• Two steps• NH3 (aq) + H2O \rightleftharpoons NH4+ (aq) + OH (aq)• H+ (aq) + OH (aq) \rightarrow H2O• Overall reaction• NH3 (aq) + H+ (aq) \rightleftharpoons NH4+ (aq)

Acid-Base Titrations

- Commonly used to determine the concentration of a dissolved species or its percentage in a mixture
- Titration
- Measuring the volume of a standard solution (known concentration) needed to react with a measured quantity of a sample

Titrations

- Titrant (in the buret)
 - Know concentration
 - Know volume
- Analyte (in the Erlenmeyer flask)
 - Know volume or mass
 - Determine concentration or mass percent by reacting with the titrant

Analyzing for Acetic Acid

• $HC_2H_3O_2$ (aq) + OH^- (aq) $\Rightarrow C_2H_3O_2^-$ (aq) + H_2O

- The objective is to determine when the reaction is complete
- When the number of moles of acid equals the number of moles of OH-, the *equivalence point* has been reached
- Equivalence point is where the number of moles of acid equals the number of moles of base
- The *endpoint* is indicated by a color change in the acid-base *indicator*

xample 4.5		1
0		
	ANALYSIS	
Information given:	volume (25.00 mL) and molarity (0.316 <i>M</i>) of H_3X molarity (0.125 <i>M</i>) of NaOH net ionic equation $[H_3X(aq) + 2OH^-(aq) \rightarrow 2H_2O + X^{2-}(aq)]$	
Information implied:	stoichiometric ratio; reacting species	
Asked for:	volume of NaOH required for neutralization	
	STRATEGY	
	SOLUTION	
mol NaOH	$0.02500 \text{ L} \times 0.316 \frac{\text{mol H}_2 X}{L} \times \frac{2 \text{mol OH}^-}{1 \text{mol H}_2 X} \times \frac{1 \text{mol NaOH}}{1 \text{mol OH}} = 0.0158$	

xample 4.5, (Cont'd)		
Ь		
	ANALYSIS	
Information given:	volume (28.74 mL) and molarity (0.125 M) of NaOH volume of H ₂ X (25.00 mL) required for complete neutralization net ionic equation $[H_2X(aq) + 2 \text{ OH}^-(aq) \rightarrow 2H_2O + X^{2-}(aq)]$	
Information implied:	stoichiometric ratio	
Asked for:	molarity of H ₂ X	
	STRATEGY	
	SOLUTION	
Mol H ₂ X Molarity of H ₂ X (<i>M</i>)	$\begin{array}{l} 0.02874 \ \mathrm{L} \times \ 0.125 \ \frac{\mathrm{mol} \ \mathrm{NaOH}}{\mathrm{L}} \times \frac{1 \ \mathrm{mol} \ \mathrm{OH}^{-}}{1 \ \mathrm{mol} \ \mathrm{NaOH}} \times \frac{1 \ \mathrm{mol} \ \mathrm{H}_{2} \mathrm{X}}{2 \ \mathrm{mol} \ \mathrm{OH}^{-}} = 0.00180 \\ \\ M = n + V = \frac{0.00180 \ \mathrm{mol}}{0.02500 \ \mathrm{L}} = 0.0720 \ M \end{array}$	continued

Oxidation-Reduction Reactions

- Short name: Redox reactions
- Electron exchange
 - Oxidation is a loss of electrons
 - Reduction is a gain of electrons

Rusting of Metal

- When exposed to oxygen, metal containing iron will rust
 - Rust is iron oxide
 - Iron loses electrons
 - Oxygen gains electrons
 - · This is a redox reaction

Reaction of Zinc with an Acid

- Zn (s) + 2 H⁺ (aq) \rightarrow Zn²⁺ (aq) + H₂ (g)
- Consider two half equations:
 - Zn loses two electrons
 Zn (s) → Zn²⁺ (aq) + 2 e⁻
 - H⁺ gains an electron
 - 2H⁺ (aq) + 2 e⁻ \rightarrow H₂ (g)

Redox Principles

- Oxidation and reduction must occur together
- There is no net change in the number of electrons in a redox reaction

Cause and Effect

- Something must cause the zinc to lose two electrons
 - This is the oxidizing agent the H+
- Something must cause the H⁺ to gain two electrons
 - This is the *reducing agent* the Zn
- Note that
 - The oxidizing agent is reduced
 - The reducing agent is oxidized
 - Both of these appear as *reactants* (not products)

Reducing Agents

- Reducing agents become oxidized
- · We know that metals commonly form cations
- Metals are generally reducing agents

Oxidizing Agents

- We know that many nonmentals form anions
- To form an anion, a nonmetal must gain electrons
- Many nonmetals are good oxidizing agents

Tracking Electrons – Oxidation Numbers

- As we look at the concept of oxidation numbers it is important to realize that
 - Oxidation numbers are not real charges
 - Oxidation numbers *may or may not correspond to ion charges*
 - Oxidation numbers may be fractional

Rules Governing Oxidation Numbers

- 1. The oxidation number of an element in an *elementary substance* is *zero*.
- 2. The oxidation number of an *element in a monatomic ion* is the *charge on the ion*
- 3. Certain elements have the same oxidation number in most compounds
 - a. Group 1 metals are +1
 - b. Group 2 metals are +2
 - c. Oxygen is usually -2
 - d. Hydrogen is usually +1
- 4. Oxidation numbers sum to zero (compound) or to the charge (polyatomic ion)

Example 4.	7	
EXAMPLE 4.7		
Consider the unbalanced re	dox equation:	
$Cr^{3+}(aq) + H_2O_2(aq) \rightarrow$	$2H_2O + Cr_2O_7^{2-}(aq)$	
(a) Identify the element oxi	dized and the element reduced.	
(b) What are the oxidizing	and reducing agents?	
	STRATEGY	
1. Determine the oxidation	number of each element.	
2. Find elements whose oxi	dation numbers change.	
	SOLUTION	
Oxidation numbers	$\mathrm{Cr}_{:} + 3; \mathrm{H}_{:} + 1; \mathrm{O}_{:} - 1 \longrightarrow \mathrm{H}_{:} + 1; \mathrm{O}_{:} - 2; \mathrm{Cr}_{:} + 6$	
Change	$Cr: +3 \rightarrow +6$ (increase)	
	$O: -1 \rightarrow -2$ (decrease)	
Element reduced	O (decrease in oxidation number)	
Element oxidized	Cr (increase in oxidation number)	
Oxidizing agent	H2O2 (It is the species that contains the element that is reduced.)	
Reducing agent	Cr2O72 (It is the species that contains the element that is oxidized.)	

Redox Reactions and Oxidation Numbers

- · Oxidation is an increase in oxidation number
- This is the same as a loss of electrons
- Reduction is a decrease in oxidation number
 - This is the same as a gain of electrons

Balancing Half-Equations (Oxidation or Reduction)

- A. Balance the atom(s) of the element being oxidized and do the same for the element being reduced.
- B. Balance the oxidation numbers by adding electrons to the correct side of the half equation.
- C. Balance charge by adding H^+ (acid) or OH^- (base).
- D. Balance hydrogens by adding $\rm H_2O.$
- E. Check to make sure oxygen is balanced.

Example 4.8				
EXAMPLE 4.8				
Balance the following half-equations: (1) $NO_3^-(aq) \rightarrow NO(g)$ (basic solution (2) $Cl_2(g) \rightarrow ClO_5^-(aq)$ (acidic solution				
	STRATEGY			
Follow the steps outlined above in t	he order given.			
	SOLUTION			
 (1) (a) Oxidation numbers (b) Atom balance (c) "total oxidation" number (d) Add electrons 	N: $+5 \rightarrow +2$, O: $-2 \rightarrow -2$; N is reduced. 1 N on each side; no adjustment is required. N: $5(1) \rightarrow N$; $2(1)$ The excitation number for N goes from $+5$ to $+2$. It is reduced by 3.			
(e) Balance charge	Add 3 electrons to the reactant side. $NO_3^{-}(aq) + 3e^- \rightarrow NO(g)$ reactants: $-1 + 3(-1) = -4$ products: 0 basis: medium: add OH ⁻ . To balance, add 4 OH ⁻ on the right. $NO_3^{-}(aq) + 3e^- \rightarrow NO(g) + 4 OH-(aq)$ reactants: $-1 + 3(-1) = -4$ products: $4(-1) = -4$			
	reactants: $-1 + 3(-1) = -4$ products: $4(-1) = -4$	continued		

Balancing Redox Equations

- 1. Split the equation into two half equations.
- 2. Balance one of the half equations.
- 3. Balance the other half equation.
- 4. Combine the two balanced half equations so as to eliminate electrons.

Hint

- In order to split the redox reaction into two half equations, determine the oxidation numbers first
 - · One element must be oxidized
 - · One element must be reduced

Example 4.9

EXAMPLE 4.9

Balance the following redox reactions. (1) $Fe^{2+}(aq) + NO_3^-(aq) \rightarrow Fe^{3+}(aq) + NO(g)$ (basic solution)

(2) $MnO_4^-(aq) + Cl_2(g) \rightarrow Mn^{2+}(aq) + ClO_5^-(aq)$ (acidic solution)

STRATEGY

Follow the four-step process outlined above in the order given.

Example 4.9, (Cont'd)					
SOLUTION					
(1) (a) Split into two half-equations.	$Fe^{2+}(aq) \rightarrow Fe^{3+}(aq)$ NO ₅ ⁻ (aq) \rightarrow NO(g)				
(b-c) Balance the half-equations.	Check the text. This has been done earlier. $Fe^{1+}(aq) \rightarrow Fe^{3+}(aq) + e^{-}$ $NO_3^-(aq) + 3e^- + 2H_2O \rightarrow NO(g) + 4 OH^-(aq)$				
(d) Eliminate electrons.	Multiply the oxidation half-equation by 3. $3[Fe^{2+}(aq) \rightarrow Fe^{3+}(aq) + e^{-}]$				
Combine half-equations.	$NO_3^-(aq) + 3Fe^{2+}(aq) + 2H_2O \rightarrow NO(g) + 4OH^-(aq) + 3Fe^{3+}(aq)$				
(2) (a) Split into two half-equations.	$MnO_4^{-}(aq) \rightarrow Mn^{2+}(aq)$ $Cl_2(g) \rightarrow ClO_3^{-}(aq)$				
(b–c) Balance the half-equations.	The oxidation half-equation is balanced in Example 4.8. $G_{1}(g) + 6H_{2}O \rightarrow 2ClO_{7}^{-1}(aq) + 10c^{-+} + 12H^{+}(aq)$ Try to balance the reduction half-equation. $MnO_{1}^{-r}(aq) + 8H^{-r}(aq) + 5c^{} \rightarrow Mn^{2r}(aq) + 4H_{2}O$				
(d) Eliminate electrons.	Multiply the reduction half-equation by 2. $2[MnO_{4}^{-}(aq) + 8H^{+}(aq) + 5e^{-} \rightarrow Mn^{2+}(aq) + 4H_2O]$				
Combine half-equations.	$Cl_2(g) + 6H_2O + 2MnO_4^-(aq) + 16H^+(aq) \rightarrow 2ClO_5^-(aq) + 12H^+(aq) + 2Mn^{2+}(aq) + 8H_2O$				
Net ionic equation	$6H_2O \rightarrow 8H_2O = 2H_2O$ (product side) $16H^+ \rightarrow 12H^+ = 4H^+$ (reactant side)				
Balanced net ionic equation	$Cl_2(g) + 2MnO_4^-(aq) + 4H^+(aq) \rightarrow 2ClO_3^-(aq) + 2Mn^{2+}(aq) + 2H_2O$				

				END PO	INT	
is a good	f idea to check	both mass an	d charge balan	ce in the fin	al balanced net ionic (equation. In (2), for example:
	CI Atoms	Mn Atoms	O Atoms	H Atoms	Charge	
Left	2	2	2(4) = 8	4	+0-2+4=+2	
Right	2	2	2(3) + 2 = 8	2(2) = 4	-2 + 4 + 0 = +2	

	Example 4.10					
XAMPLE 4.10						
onsider the balanced equation for the	reaction between iron(II) and permanganate ions in acidic solution:					
$MnO_4^{-}(aq) + 5Fe^{2+}(aq) + 8H^+(aq)$	$\rightarrow 5Fe^{3+}(aq) + Mn^{2+}(aq) + 4H_2O$					
hat volume of 0.684 M KMnO4 solutio	on is required to completely react with 27.50 mL of 0.250 M Fe(NO3)2 (Figure 4.12)?					
	ANALYSIS					
	V (27.50 mL) and M (0.250) of Fe(NO ₃) ₂ M (0.684) of KMnO ₄					
formation implied: n	eacting species; stoichiometric ratios					
ked for: v	olume of KMnO4					

Key Concepts – Reactions in Solution

- 1. Apply the precipitation diagram and schema (Figures 4.2 and 4.3) to
 - Predict solubility and precipitation reactions.
 - Write net ionic equations for precipitation reactions.
- 2. Perform stoichiometric calcuations for reactions.
- 3. Apply Tables 4.1, 4.2 and Figure 4.8 to write net ionic equations for acid-base reactions.
- 4. Determine oxidation numbers.
- 5. Balance half-equations and redox equations.