

Solubility of Ionic Compounds in Water

- When an ionic compound dissolves in water, two forces compete
- The attractive forces between the ions in the compound
- The attractive forces between the water and the ions

Outline

- Precipitation Reactions
- Acid-Base Reactions
- Oxidation-Reduction Reactions

Electrostatic Forces

- If the force of attraction between water molecules and the ions predominates, the compound will be soluble in water
- If the force of attraction between the ions in the compound predominates, the compound will be insoluble in water

Precipitation

- Precipitation in chemical reactions is the formation of a solid where no solid existed before reaction
- Precipitation is the reverse of solubility, where a solid dissolves in a solvent to produce a solution

Figure 4.1: Attractive Forces and Solubility

Will it Dissolve?

- Solubility cannot be determined by first principles
- Solubility can be classified by anion and cation type
- Soluble compounds dissolve in water
- Insoluble compounds do not dissolve

Precipitates

- Precipitates are called insoluble - they do not dissolve in solution
- Precipitation of an insoluble solid
- Mix a solution of nickel(II) chloride with one of sodium hydroxide
- A solid forms: $\mathrm{Ni}(\mathrm{OH})_{2}(\mathrm{~s})$

Figure 4.2 - Precipitation Diagram

Solubilities Trends

- Some compounds are mostly insoluble
- Carbonates and phosphates, except for the Group I and ammonium
- Hydroxides, except for the Group 1, Group 2 and ammonium
- $\mathrm{Mg}(\mathrm{OH})_{2}$ is insoluble
- Most sulfates,

Working Solubility Problems

- By knowing the rules expressed in Figure 4.2, we can predict what mixtures will precipitate, and what compounds will form

Net lonic Equations
- Must follow the rules for equations
- Atoms must balance
- Charges must balance
- Show only the ions that react

Figure 4.3: Flowchart for Solubility Determination

Net lonic Equations

- Consider the precipitation of CaCO_{3} from solutions of CaCl_{2} and $\mathrm{Na}_{2} \mathrm{CO}_{3}$
- Reactants: $\mathrm{Ca}^{2+}, \mathrm{Cl}^{-}, \mathrm{Na}^{+}$and $\mathrm{CO}_{3}{ }^{2-}$
- Products: $\mathrm{CaCO}_{3}, \mathrm{Na}^{+}$and Cl^{-}
- Two of the ions are unchanged
- These are spectator ions
- Net ionic equation: leave out the spectator ions
- $\mathrm{Ca}^{2+}(\mathrm{aq})+\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq}) \rightarrow \mathrm{CaCO}_{3}(\mathrm{~s})$

Example 4.2, (Cont'd)

SOLUTION	
(b) Ions in solution Possible precipitates Solubility Net ionic equation (c) lons in solution Possible precipitates Solubility Net ionk equation	Ba^{3+} and OH^{-}from $\mathrm{Ba}(\mathrm{OH})_{5}, \mathrm{Mg}^{3+}$ and $\mathrm{SO}_{4}{ }^{2-}$ from MgSO_{4} $\mathrm{Mg}(\mathrm{OH})_{2}$ and BaSO , Both BaSO_{4} and $\mathrm{Mg}_{\mathrm{g}}(\mathrm{OH})_{2}$ are insoluble. $\mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{Mg}(\mathrm{OH})_{2}(s)$ $\mathrm{Ba}^{3+}(a q)+\mathrm{SO}_{4}^{2-}(\mathrm{aq}) \rightarrow \mathrm{BaSO}_{4}(s)$ NH_{4}^{+}and $\mathrm{PO}_{4}{ }^{--}$from $\left(\mathrm{NH}_{4}\right)^{2} \mathrm{PO}_{6} \mathrm{~K}^{+}$and $\mathrm{CO}_{3}{ }^{2-}$ from $\mathrm{K}_{2} \mathrm{CO}_{3}$ $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$ and K, PO_{4} Both $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$ and $\mathrm{K}_{3} \mathrm{PO}_{4}$ are soluble. no reaction

Why Write Net Ionic Equations?

- Net ionic equations
- Focus attention on the reaction
- Simplify calculations
- We will use net ionic equations from now on

Figure 4.6: Flow Chart for Solution
Stoichiometry

Strong and Weak Acids and Bases

- Strong acids ionize completely to H^{+}
- $\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$
- In a solution of 1.0 M HCl , there is $1 \mathrm{M} \mathrm{H}^{+}$and $1 \mathrm{M} \mathrm{Cl}^{-}$
- No HCl is left un-ionized
- Other strong acids ionize in similar fashion

Acids and Bases

- Everyday life includes contact with many acids and bases

The Double Arrow Notation ($(\overrightarrow{)}$

- Some equations use a double arrow rather than a single arrow
- Note that the double arrow points in both directions
- For now, the double arrow indicates that a reaction does not proceed completely to the right

Weak Acids

- Weak acids ionize only partially
- $\mathrm{HB}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{B}^{-}(\mathrm{aq})$
- $\mathrm{HF}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq})$
- Commonly, weak acids are 5\% ionized or less

Strong Bases

- Strong bases ionize completely to OH^{-}
- $\mathrm{NaOH}(\mathrm{s}) \rightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
- $\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s}) \rightarrow \mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq})$

Strong Acids and Bases

TABLE 4.1 Common Strong Acids and Bases			
Acid	Name of Acid	Base	Name of Base
HCl	Hydrochloric acid	LiOH	Lithium hydroxide
HBr	Hydrobromic acid	NaOH	Sodium hydroxide
HI	Hydriodic acid	KOH	Potassium hydroxide
HNO_{3}	Nitric acid	$\mathrm{Ca}(\mathrm{OH})_{2}$	Calcium hydroxide
HClO_{4}	Perchloric acid	$\mathrm{Sr}(\mathrm{OH})_{2}$	Strontium hydroxide
$\mathrm{H}_{2} \mathrm{SO}_{4}$	Sulfuric acid	$\mathrm{Ba}(\mathrm{OH})_{2}$	Barium hydroxide

Acids and Bases - Reactions

- Acids react with bases
- Strong acid-strong base
- Weak acid-strong base
- Weak base-strong acid

Weak Bases

- Weak bases react with water to form OH^{-}, but the reaction does not go to completion
- $\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
- $\mathrm{CH}_{3} \mathrm{NH}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
- Commonly, weak bases are 5% ionized or less

Strong Acid-Strong Base Reaction

- Always the same net ionic equation
- $\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}$
- Note that as usual, net ionic equations use the smallest whole number coefficients
- $2 \mathrm{HBr}(\mathrm{aq})+\mathrm{Ba}(\mathrm{OH})_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{CaBr}_{2}(\mathrm{aq})$
- Still has the same net ionic equation:
- $\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}$

Weak Acid-Strong Base Reaction

- Two steps
- $\mathrm{HB}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{B}^{-}(\mathrm{aq})$
- $\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}$
- Overall reaction
- $\mathrm{HB}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{B}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}$

Weak Base-Strong Acid Reaction

- Two steps
- $\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
- $\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}$
- Overall reaction
- $\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq}) \rightleftharpoons \mathrm{NH}_{4}^{+}(\mathrm{aq})$

Reactions

Titrations

- Titrant (in the buret)
- Know concentration
- Know volume
- Analyte (in the Erlenmeyer flask)
- Know volume or mass
- Determine concentration or mass percent by reacting with the titrant

Analyzing for Acetic Acid

- $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightleftharpoons \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}$
- The objective is to determine when the reaction is complete
- When the number of moles of acid equals the number of moles of OH^{-}, the equivalence point has been reached
- Equivalence point is where the number of moles of acid equals the number of moles of base
- The endpoint is indicated by a color change in the acid-base indicator

Figure 4.9 - An Acid-Base Titration

Figure 4.10: Molecular Representation of an Acid-Base Titration

Example 4.5, (Cont'd)		
(1)		
ANalysis		
Information given:	volume (25.00 mL) and molarity (0.316 M) of $\mathrm{H}_{2} \mathrm{X}$ molarity (0.125 M) of NaOH net ionic equation $\left[\mathrm{H}_{2} \mathrm{X}(\right.$ aq $)+2 \mathrm{OH}^{-}($aq $) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{X}^{2-}($ aq $\left.)\right]$	
Information implied:	stoichiometric ratio, reacting species	
Asked fors	volume of NaOH required for neutralization	
Strategy		
1. Use the stoichiometric ratioc $2 \mathrm{~mol}^{-1} \mathrm{OH}^{-} / \mathrm{mol}_{3} \mathrm{H} X$ 2. Follow the flow chart in Figure 4.6. $\mathrm{H}_{3} \mathrm{X}$ does not break up into ions. Skip the moles parent compound \rightarrow moles ion step mol $\mathrm{H}_{2} \mathrm{X} \xrightarrow[\text { ratio }]{\text { stoichicotric }} \mathrm{mol} \mathrm{OH}^{-} \longrightarrow$ mol $\mathrm{NaOH} \xrightarrow{n+M}$ volume NaOH		
SOLution		
mol NaOH Volume of NaOH used	$\begin{aligned} & 0.02500 \mathrm{~L} \times 0.316 \frac{\mathrm{~mol} \mathrm{H}_{2} \mathrm{X}}{\mathrm{~L}} \times \frac{2 \mathrm{~mol} \mathrm{OH}^{-}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{X}} \times \frac{1 \mathrm{~mol} \mathrm{NaOH}}{1 \mathrm{~mol} \mathrm{OH}^{-}}=0.0158 \\ & V=n+M=\frac{0.0158 \mathrm{~mol}}{0.125 \mathrm{M}}=0.126 \mathrm{~L} \end{aligned}$	

Example 4.5

EXAMPLE 4.5 GRADED
Three beakers labeled A, B, and C contain the weak acid $\mathrm{H}_{2} \mathrm{X}$. The weak acid is titrated with 0.125 M NaOH. Assume the reaction to be $\mathrm{H}_{2} \mathrm{X}(a q)+2 \mathrm{OH}^{-}(a q) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{X}^{2-}(a q)$
(a) Beaker A contains 25.00 mL of $0.316 \mathrm{M} \mathrm{H}_{2} \mathrm{X}$. What volume of NaOH is required for complete neutralization?
(B) Beaker B contains 25.00 mL . of a solution of $\mathrm{H}_{2} \mathrm{X}$ and requires 28.74 mL of NaOH for complete neutralization. What is the molarity of the $\mathrm{H}_{2} \mathrm{X}$ solution?
(C) Beaker C contains 0.124 g of $\mathrm{H}_{2} \mathrm{X}$ and 25.00 mL . of water. To reach the equivalence point, 22.04 mL of NaOH are required. What is the molar mass of $\mathrm{H}_{2} \mathrm{X}$

Acids and Metals

- Many metals will react with acids, producing

Oxidation-Reduction Reactions

- Short name: Redox reactions
- Electron exchange
- Oxidation is a loss of electrons
- Reduction is a gain of electrons

Rusting of Metal

- When exposed to oxygen, metal containing iron will rust
- Rust is iron oxide
- Iron loses electrons
- Oxygen gains electrons
- This is a redox reaction

Redox Principles

- Oxidation and reduction must occur together
- There is no net change in the number of electrons in a redox reaction

Cause and Effect

- Something must cause the zinc to lose two electrons
- This is the oxidizing agent - the H^{+}
- Something must cause the H^{+}to gain two electrons
- This is the reducing agent - the Zn
- Note that
- The oxidizing agent is reduced
- The reducing agent is oxidized
- Both of these appear as reactants (not products)

Reducing Agents

- Reducing agents become oxidized
- We know that metals commonly form cations
- Metals are generally reducing agents

Oxidizing Agents

- We know that many nonmentals form anions
- To form an anion, a nonmetal must gain electrons
- Many nonmetals are good oxidizing agents

Tracking Electrons - Oxidation Numbers

- As we look at the concept of oxidation numbers it is important to realize that
- Oxidation numbers are not real charges
- Oxidation numbers may or may not correspond to ion charges
- Oxidation numbers may be fractional

Rules Governing Oxidation Numbers

1. The oxidation number of an element in an elementary substance is zero.
2. The oxidation number of an element in a monatomic ion is the charge on the ion
3. Certain elements have the same oxidation number in most compounds
a. Group 1 metals are +1
b. Group 2 metals are +2
c. Oxygen is usually -2
d. Hydrogen is usually +1
4. Oxidation numbers sum to zero (compound) or to the charge (polyatomic ion)

Example 4.6 (Cont'd)

SOLUTION	
(a) N_{2} is in its elementary state. (Rule 1) (b) N^{3-} is a monoatomic ion. (Rule 2) (c) There are no Group 1 or Group 2 metals. (Rule 6) $\mathrm{NO}_{3}{ }^{-}$is a polyatomic ion. (Rule 5) (d) Ba is a Group 2 metal. (Rule 3) The sum of the oxidation numbers is 0 . (Rule 5) (e) K is a Group 1 metal. (Rule 3) The sum of the oxidation numbers is 0 . (Rule 5)	axid. no. $\mathrm{N}=0$ oxid. no, $\mathrm{N}=-3$ oxid. no. $\mathrm{O}=-2$ $3(-2)+x=-1 \text {; oxid. no. } \mathrm{N}=+5$ oxid. no. $\mathrm{Ba}=+2$ $+2+x=0 \text { : oxid. no. } 0=-2$ oxid. no. $K=+1$ $2(1)+2 x=0 \text {; oxid, no. } 0=-1$
END POINT	
Always look for the "leading elements" (Group 1 and Group 2 metals and F) in a compound when you start. These elements will lead you to the oxidation numbers of the other elements in the compound. If these leading elements are not present, then look for H and $\mathrm{O}(+1$ and -2 , respectively, when not combined with Group 1 or 2 metals.)	

Example 4.6

Example 4.7

Consider the unbalanced redox equation:
$\mathrm{Cr}^{3}($ aqe $)+\mathrm{H}_{2} \mathrm{O}_{2}($ aq $) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Cr}_{2} \mathrm{O}_{3}$
$\mathrm{Cr}^{+}($aq $)+\mathrm{H}_{2} \mathrm{O}_{2}($ aq $) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Cr}_{2} \mathrm{O}_{2}^{2-}($ aq $)$
(a) Identify the element oxidized and the dement reduced.
(b) What are the oxidizing and reducing agents?

1. Determine the oxidation number of each element
2. Find elements whose oxidation numbers change.

Oxidation numbers	$\mathrm{Cr}+3 ; \mathrm{H}+1 ; \mathrm{O}:-1 \rightarrow \mathrm{H}+1 ; \mathrm{O}:-2 ; \mathrm{Cr}+6$
Change	$\mathrm{Cr}+3 \rightarrow+6$ (increase)
	$\mathrm{O}:-1 \rightarrow-2$ (decrease)
Element reduced	O (decrease in oxidation number)
Element oxidized	Cr (increase in oxidation number)
Oxidizing agent	$\mathrm{H}_{2} \mathrm{O}_{2}$ (It is the species that contains the dement that is reduced.)
Reducing agent	$\mathrm{Cr}_{2} \mathrm{O}_{2}^{2-}$ (It is the species that contains the element that is oxidired.)

Redox Reactions and Oxidation Numbers

- Oxidation is an increase in oxidation number
- This is the same as a loss of electrons
- Reduction is a decrease in oxidation number
- This is the same as a gain of electrons

Balancing Half-Equations (Oxidation or Reduction)

A. Balance the atom(s) of the element being oxidized and do the same for the element being reduced.
B. Balance the oxidation numbers by adding electrons to the correct side of the half equation.
C. Balance charge by adding H^{+}(acid) or OH^{-}(base).
D. Balance hydrogens by adding $\mathrm{H}_{2} \mathrm{O}$.
E. Check to make sure oxygen is balanced.

Example 4.8, (Cont'd)

Balancing Redox Equations

1. Split the equation into two half equations.
2. Balance one of the half equations.
3. Balance the other half equation.
4. Combine the two balanced half equations so as to eliminate electrons.

Hint

- In order to split the redox reaction into two half equations, determine the oxidation numbers first
- One element must be oxidized
- One element must be reduced

Example 4.9

Balance the following redox reactions.
(1) $\mathrm{Fe}^{* *}(a q)+\mathrm{NO}_{3}^{-}(a q) \rightarrow \mathrm{Fe}^{* *}($ aq $)+\mathrm{NO}(g)$ (basic solution)
(2) $\mathrm{MnO}_{4}^{-}($aq $)+\mathrm{Cl}_{2}(\mathrm{~s}) \rightarrow \mathrm{Mn}^{2+}($ aq $)+\mathrm{ClO}_{3}^{-}$-(aq) \quad (acidic solution)

STRATEGY
Follow the four-step process outlined above in the order given.

Example 4.9, (Cont'd)

SOLUTION	
(1) (a) Split into two half-equations.	$\begin{aligned} & \mathrm{Fe}^{2 *}(a q) \rightarrow \mathrm{FF}^{2 *}(\text { aqp } \\ & \mathrm{NO}_{3}-(\text { aq }) \rightarrow \mathrm{NO}(g) \end{aligned}$
(b-c) Bolance the half-equations.	Check the text. This has been done earlier. $\mathrm{Fe}^{+3}(a q) \rightarrow \mathrm{Fe}^{3+}($ aq $)+e^{-}$ $\mathrm{NO}_{3}{ }^{-}(\mathrm{aq})+3 e^{-}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NO}_{(g)}+4 \mathrm{OH}^{-}(\mathrm{aq})$
(d) Eliminate electrons	Multiply the oxidation half-equation by 3 . $3\left[\mathrm{Fe}^{2+}(\mathrm{aq}) \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq})+c^{-1}\right.$
Combine halfequations.	$\mathrm{NO}_{3}^{-}{ }^{-}(\mathrm{aq})+3 \mathrm{Fe}^{*}($ aq $)+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NO}($ Q $)+4 \mathrm{OH}^{-}($aq $)+3 \mathrm{Fe}^{*}($ aq $)$
(2) (a) Split into two halfequations.	$\begin{aligned} & \mathrm{MnO}_{4}{ }^{-}(\mathrm{aq}) \rightarrow \mathrm{Mn}^{+4}(a q) \\ & \mathrm{C}_{2}(g) \rightarrow \mathrm{CO}_{3}-(\operatorname{sqq}) \end{aligned}$
(b-c) Balance the half-equations.	The oxidation half-equation is balanced in Example 4.8. $\mathrm{C}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{ClO}_{3}^{-}(\mathrm{aq})+10 e^{-}+12 \mathrm{H}^{+}(\mathrm{aq})$ Try to balance the reduction half-equation. $\mathrm{MnO}_{4}^{-}(a q)+8 \mathrm{H}^{+}(\mathrm{aq})+5 \mathrm{c}^{-} \rightarrow \mathrm{Mn}^{2+}(\mathrm{aq})+4 \mathrm{H}_{2} \mathrm{O}$
(d) Eliminate electrons	Multiply the reduction half-equation by 2 . $2\left[\mathrm{MnO}_{4}^{-}(a q)+8 \mathrm{H}^{+}(a q)+5 e^{-} \rightarrow \mathrm{Mn}^{2+}(a q)+4 \mathrm{H}_{2} \mathrm{O}\right]$
Combine halfequations,	$\begin{gathered} \mathrm{C}_{3}(\mathrm{~g})+6 \mathrm{H}_{3} \mathrm{O}+2 \mathrm{MnO}_{4}^{-}-(\text {aq })+16 \mathrm{H}^{+}(\text {aqq }) \\ 2 \mathrm{CO} \mathrm{O}_{3}-(\text { aq }) \end{gathered}+12 \mathrm{H}^{+}(\text {aq })+2 \mathrm{Mn}^{2}(\text { aqq })+8 \mathrm{H}_{3} \mathrm{O}$
Net ionic equation	$\begin{aligned} & 6 \mathrm{H}_{3} \mathrm{O} \rightarrow 8 \mathrm{H}_{3} \mathrm{O}=2 \mathrm{H}_{3} \mathrm{O} \text { (product side) } \\ & 16 \mathrm{H}^{+} \rightarrow 12 \mathrm{H}^{+}=4 \mathrm{H}^{+} \text {(reactant side) } \end{aligned}$
Batanced net ionic equation	$\mathrm{Cl}_{2}(\mathrm{~s})+2 \mathrm{MnO}_{4}^{-(a q)}+4 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow 2 \mathrm{ClO}_{-}^{-}(\mathrm{aq})+2 \mathrm{Mn}^{3+}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}$

Redox Titrations

- Redox reactions can be used to analyze an unknown in the same way as is done with acid-base reactions

Key Concepts - Reactions in Solution

1. Apply the precipitation diagram and schema (Figures 4.2 and 4.3) to

- Predict solubility and precipitation reactions.
- Write net ionic equations for precipitation reactions.

2. Perform stoichiometric calcuations for reactions.
3. Apply Tables 4.1, 4.2 and Figure 4.8 to write net ionic equations for acid-base reactions.
4. Determine oxidation numbers.
5. Balance half-equations and redox equations.
