

Edward J. Neth • University of Connecticut

Outline

- · Light, photon energies and atomic spectra
- · The hydrogen atom
- Quantum numbers
- · Atomic orbitals, shapes and sizes
- Electron configurations in atoms
- Orbital diagrams of atoms
- · Electron arrangements in monatomic ions
- · Periodic trends in the properties of atoms

Review

- Chapter 2: Structure of the Atom
 - Nucleus: protons and neutrons
 - Surrounding the nucleus: electrons
- Electron Arrangements in Atoms
 - Energy levels
 - Spatial locations
- Considerations
 - Single electron in the hydrogen atom
 - · Multiple electrons in other atoms

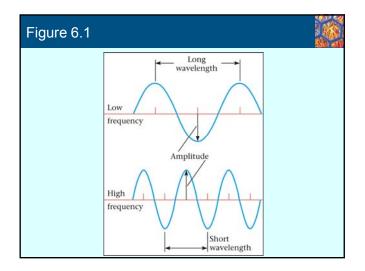
Arranging Electrons in Atoms

- Electron configuration
 - The electron configuration associates the energy level with the number of electrons in each level
- · Orbital diagrams
 - Orbital diagrams show the arrangement of electrons within each energy level
- · The periodic table
 - Electron configurations can be deduced from the periodic table
 - Properties of atoms can be related to the electron configuration

Atomic Spectra

- Under certain circumstances, atoms can generate light, which is transmitted through space
 - Fireworks displays
 - Neon lights
 - Sodium vapor streetlights

The Wave Nature of Light


- Wavelength (λ)
 - Distance between two successive crests or troughs in the light wave
 - Measured in nanometers (1 nm = 10⁻⁹ m)
- Frequency (v)
 - Number of successive crests or troughs (wave cycles) that pass a point in a unit of time
 - If 10 8 cycles pass in one second, the frequency is $10^8/s$ or 10^8Hz

Wavelength-Frequency Relationship

• The speed at which a wave moves through space is found by multiplying the wavelength by the frequency:

$$\lambda v = c$$

- c is the speed of light in a vacuum, 2.998 X $10^8 \mbox{ m/s}$
- To use this equation,
 - Frequency must be in s⁻¹
 - · Wavelength must be in m

EXAMPLE 6.1	
	a warm summer evening watching the red sky ($\lambda = 625$ nm) at sunset and listening to mask set in the latter has frequency 3.84 $\times 10^{10}$ s ⁻¹ .
	the radiation from the red sky?
	ANALYSIS
Information given	wavelength of the sky's red color (625 nm) frequency of the laser $(3.34 \times 10^{4} \text{ s}^{-1})$
nformation implied.	speed of light (2.998 \times 10 ⁴ m/s) meter to nanometer conversion factor
taked for	frequency of the sky's radiation laser's wavelength in nm
	STRATEGY
	ed as symbols for frequency (#) and wavelength (X). frequency and wavelength. m to nam (h).
	SOLUTION
(a) Wavelength in meters Frequency	$\begin{split} & 625 \ \mathrm{nm} \times \frac{1 \times 10^{-6} \ \mathrm{m}}{1 \ \mathrm{nm}} = 625 \times 10^{-6} \ \mathrm{m} \\ & \mu = \frac{c}{\Lambda} = \frac{2}{325 \times 10^{-6} \ \mathrm{m}} = \frac{6.05 \times 10^{16} \ \mathrm{m}}{625 \times 10^{-6} \ \mathrm{m}} = \frac{6.05 \times 10^{16} \ \mathrm{m}}{1000 \ \mathrm{m}} \end{split}$
h) Wavelength	$\lambda = \frac{c}{p} = \frac{2.998 \times 10^9 \text{ m/s}}{3.84 \times 10^{16} \text{ s}^{-1}} = 7.81 \times 10^{-7} \text{ m}$
Wavelength in nm	$7.81 \times 10^{-7} \text{ m} \times \frac{1 \text{ nm}}{1 \times 10^{-9} \text{ m}} = 781 \text{ nm}$

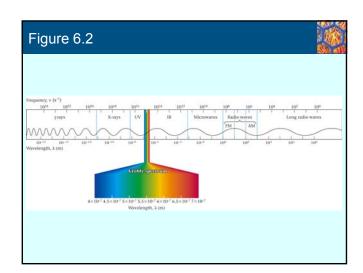
ABLE 6.1 Relation Between	Color and Wavelength	
Wavelength (nanometers)	Color Absorbed	Color Transmitted
<400 nm	Ultraviolet	Colorless
400~450 nm	Violet	Red, orange, yellow
450-500 nm	Blue	Red, orange, yellow
500-550 nm	Green	Purple
550–580 nm	Yellow	- S Pulple
580-650 nm	Orange	Ĵ
650-700 nm	Red	Blue, green
>700 nm	Infrared	Colorless

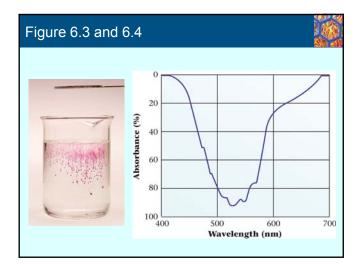
The Electromagnetic Spectrum

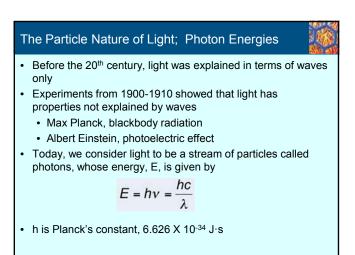
The human eye can see light covering only a narrow region of the electromagnetic spectrum (400-700 nm)

- We see the red glow of a barbecue grill, but most of the radiation is emitted above 700 nm as infrared radiation, also known as heat
- We cannot see the radiation responsible for sunburn (ultraviolet, below 400 nm) or X-rays (even shorter wavelength)

Color and Wavelength


- Each color detected by the human eye has a wavelength correlated to it
- Color can arise from absorption or transmission of light


Color


- · Some substances can be identified by color
- Color arises from the absorption and transmission of specific wavelengths of light
 - · Copper sulfate is blue
 - Potassium permanganate is deep violet

Visible Light

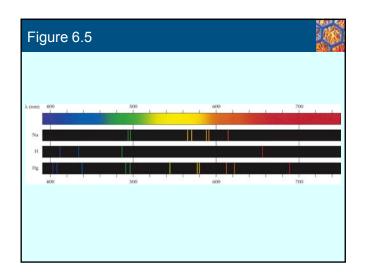
- Visible light ranges from 400 to 700 nm
 - Below 400 nm is the ultraviolet
 - Ultraviolet light leads to sunburn
 - Above 700 is the infrared
 Heat
 - Absorption of infrared light leads to warming up
 - · Global warming and carbon dioxide

Energy and Wavelength

- Note that energy and wavelength are inversely related
 - As the wavelength becomes longer, energy decreases
 - As the wavelength becomes shorter, energy increases
- Low energy
 - · Infrared, microwave
- High energy
 - Ultraviolet, X-ray

Example 6.2	
EXAMPLE 6.2 GRAD	ED
Calculate the energy, iCalculate the energy, i	mmonly used to illuminate highways because of their intense yellow-orange emissions at 589 nm. n joules, of one photon of this light. n kilojoules, of one mole of such photons.
	he optic nerve needs at least 2.0×10^{-61} f of energy to trigger impulses that reach the brain. How odiam lamp emissions are needed to "see" the yellow light?
	ANALYSIS
Information given:	wavelength of sodium vapor (589 nm)
Information implied:	speed of light (2.998 \times 10 ⁴ m/s); Planck's constant (6.626 \times 10 ⁻³⁴ J \cdot s)
Asked for:	energy of one photon in J
	STRATEGY
Use Equation 6.2 to relate $E = \frac{hc}{\lambda}$	energy to wavelength.
	SOLUTION
Energy for one photon	$E = \frac{hc}{\lambda} = \frac{(6.626 \times 10^{-34} \text{ J} \cdot \text{s})(2.998 \times 10^8 \text{ m/s})}{589 \times 10^{-9} \text{ m}} = 3.37 \times 10^{-19} \text{ J}$ continued

ь	
	ANALYSIS
Information given:	From part (a), the energy of one photon (3.37 \times 10 $^{-10}$ J)
Information implied:	Avogadro's number (6.022 \times 10 ²³ units/mol)
Asked for:	energy of one mole of photons in kJ
	STRATEGY
Use the appropriate conver	sion factors to change nm to m, J to kJ, and one photon to one mole of photons.
	SOLUTION
E/mol of photons	$E = 1 \text{ mol photons} \times \frac{3.37 \times 10^{-19} \text{ J}}{1 \text{ photon}} \times \frac{6.022 \times 10^{23} \text{ photons}}{1 \text{ mol photons}} \times \frac{1 \text{ kJ}}{1000 \text{ J}} = \frac{203 \text{ kJ}}{200 \text{ kJ}}$


Example 6	.2, (Cont'd)
O	
	ANALYSIS
Information given:	Energy required by the optic nerve $(2.0 \times 10^7 \text{ J})$ From part (a), the energy of one photon $(3.37 \times 10^{-19} \text{ J})$
Asked for:	number of photons needed to "see" yellow light
	STRATEGY
$\frac{3.37 \times 10^{-19} \text{ J}}{1 \text{ photon}}$	for yellow light found in part (a) as a conversion factor.
	SOLUTION
Photons needed	2.0×10^{-17} J $\times \frac{1 \text{ photon}}{3.37 \times 10^{-19}} = 59 \text{ photons}$
	3.37 ~ 10)
	END POINTS
 In part (a), 3.37 × 10° 	
2. In part (b), the energy	END POINTS

Atomic Spectra

- Sir Isaac Newton
 - 17th Century
 - Showed that white light from the sun can be separated into color components by a prism
 - The resulting spectrum is *continuous* (unbroken) from 400 to 700 nm

Gaseous Elements

- Elements can be put in to the gas phase at high energy
 - Resulting emission of light is *not continuous*
 - Consider sodium
 - Two strong lines in the yellow region: 589.0 and 589.6 nm
 - Light is colored only yellow
 - Line Spectra

Line Spectra

 The fact that photons making up atomic spectra have only certain discrete wavelengths implies that they can have only discrete energies because

$$\Xi = hv = \frac{hc}{\lambda}$$

- Photons are produced when an electron moves from one energy level to another within the atom
- Electronic energies are *quantized*: they are limited to specific values

Atomic Spectrum of Hydrogen

- Hydrogen has a single electron and therefore a simple atomic spectrum
 - Multi-electron atoms have complex spectra
- When hydrogen is energized at high voltage, atoms emit radiation
 - · Wavelengths can be grouped into series
 - First series was discovered by Johann Balmer (the Balmer Series)

Table 6.2

TABLE 6.2 Wavelengths (nm) of Lines in the Atomic Spectrum of Hydrogen

Ultraviolet (Lyman Series)	Visible (Balmer Series)	Infrared (Paschen Series)
121.53	656.28	1875.09
102.54	486.13	1281.80
97.23	434,05	1093.80
94.95	410.18	1004.93
93.75	397.01	
93.05		

The Hydrogen Atom

- Niels Bohr (1885-1962)
 - Theoretical explanation of the hydrogen spectrum
 - 1922 Nobel Prize in physics
- The Bohr Model
 - Hydrogen consists of a central proton about which moves the electron
 - Electrostatic attraction of proton for electron likened to centrifugal force of circular motion of the electron
 - · Electrons occupy fixed orbits around the nucleus

Mathematics of the Bohr Model

The energy of the hydrogen electron is given by

$$E_n = \frac{-R_H}{n^2}$$

- E_n is the energy of the electron
- + $\rm R_{\rm H}$ is the Rydberg constant, 2.180 X 10^{-18} J
- n is an integer called the principal quantum number

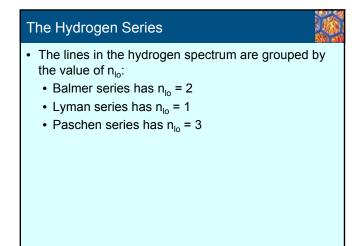
Notes on the Bohr Model

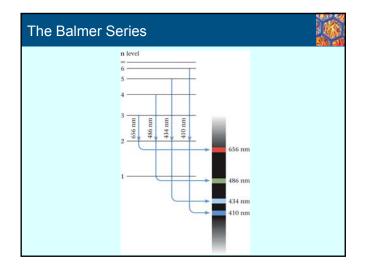
- 1. Zero energy is the point at which the proton and electron are infinitely separated; energy must be absorbed to reach this state, so all states below it have negative energy.
- 2. The ground state is the lowest energy state for the hydrogen atom, where n = 1. Any n value above 1 corresponds to an excited state.
- 3. When an electron emits energy as a photon of light, it falls from a higher n to a lower n.

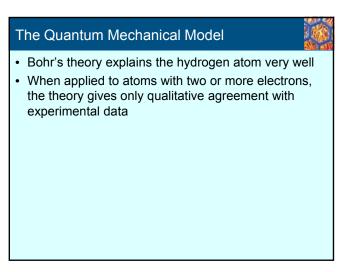
Energy Release

Γ

• The difference in energy between two states in the hydrogen atom is the energy of the photon released in the transition between those states


$$\Delta E = hv = E_{hi} - E_{lo}$$


• Combining Bohr's equation for two states produces the Rydberg equation for the hydrogen atom


$$V = \frac{R_{H}}{h} \left[\frac{1}{n_{lo}^{2}} - \frac{1}{n_{hi}^{2}} \right]$$

h is Planck's constant, 6.626 X 10⁻³⁴ J⋅s

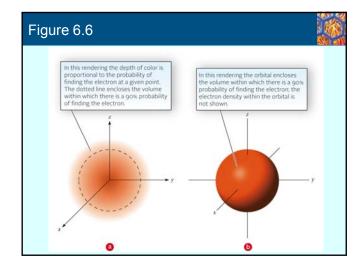
ample 6.3		
EXAMPLE 6.3		
Calculate the wavelength	n nanometers of the line in the Balmer series that results from the transition $\mathbf{n} = 4$ to $\mathbf{n} = 2$.	
	ANALYSIS	
Information given:	n = 2; n = 4	
Information implied:	speed of light (2.998 × 10 ⁶ m/s) Rydberg constant (2.180 × 10^{-16} J) Planck constant (6.626 × 10^{-18} J · s)	
Asked for:	wavelength in nm	
	STRATEGY	
$\nu = \frac{R_{\rm H}}{h} \left(\frac{1}{n_{\rm lo}^2} - \frac{1}{n_{\rm lot}^2} \right)$ Use the lower value for	a 6.4 to find the frequency due to the transition. a as n_{μ} and the higher value for $n_{\mu\nu}$. d the wavelength in meters and then convert to nanometers.	
	SOLUTION	
1. Frequency 2. Wavelength	$\begin{split} \nu &= \frac{2.180 \times 10^{-16}}{6.626 \times 10^{-36} 1} + \sqrt{\frac{1}{(2)^2} - \frac{1}{(4)^2}} = 6.169 \times 10^{16} \text{s}^{-1} \\ \lambda &= \frac{2.988 \times 10^{16} \text{s}^{-1}}{6.169 \times 10^{16} \text{s}^{-1}} \times \frac{1 \text{nm}}{10^{16} \text{m}} = \frac{466.0 \text{nm}}{466.0 \text{nm}} \end{split}$	
	END POINT	
Compare this value with t	hat listed in Table 6.2 for the second line of the Balmer series.	

Matter Waves

1 Con

- deBroglie, 1892-1987
 - If light, which is ordinarily considered a wave, can have the properties of a particle, then electrons, which are ordinarily considered particles, can have the properties of a wave
 - The result was a new branch of physics called wave mechanics, which evolved into quantum mechanics

Fundamental Principles of Quantum Mechanics


- The kinetic energy of an electron is inversely related to the volume of the region in space to which it is confined
 - The kinetic energy increase from the shrinking volume of an electron moving toward the nucleus balances the electrostatic attraction to prevent the electron from falling into the nucleus
- It is impossible to specify the exact position of an electron at a given instant
 - We can only specify the probability of finding an electron in a particular region of space

Schrodinger

- Erwin Schrödinger (1887-1961)
 - 1926
 - Wrote a differential equation to express the wave properties of an atom
 - + Ψ is called the wave function
 - It is possible to find the amplitude of the electron wave at various points in space
 - + Ψ^2 is proportional to the probability of finding an electron at a particular point in space

Electron Cloud Diagrams

- Electron cloud diagrams are maps of electron density
 - The depth of color is proportional to Ψ², the probability of finding an electron
- Orbitals
 - The orbital represents the region in space where there is a 90% or higher probability of finding an electron
- · Pictorial view follows

Quantum Numbers

- The Schrödinger equation can be solved exactly only for the hydrogen atom
- Approximations allow for solutions of the equation relevant to atoms with two or more electrons
- The solutions result in orbitals, which have an energy, a shape and an orientation in space
- The solutions result in three quantum numbers:
 - n
 - { • m,

First Quantum Number, n

- The principal energy level is specified by the first quantum number, n
- n = 1, 2, 3, 4, ...
 - n = 1 is the first principal level
 - n = 2 is the second principal level, and so on \ldots

The Second Quantum Number, Ł

- Each principal energy level (specified by n) has one or more sublevels
 - The sublevel is specified by the quantum number *l*
 - *l* is derived from n:
 - { = 0, 1, 2 ... (n-1)
 - · In the nth principal level, there are n sublevels
 - Instead of using numbers, the sublevels are given letter designations
 - For l = 0, 1, 2, 3 we use s, p, d, f

Combining n and {

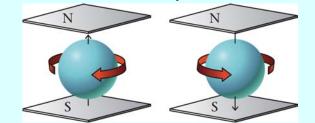
- n and *l* are combined to indicate the principal and subsidiary levels
 - 1s means n = 1 and l =0
 - 2s means n = 2 and ℓ = 0
 - 3p means n = 3 and ℓ = 1

TABLE 6.3 Sublevel Designations for the First Four Principal Levels

n	1	2		3				4	
ł	0	0 1	0	1	2	0	1	2	3
Sublevel	1s	2s 2p	35	3p	3d	45	4p	4d	4f

Relative Energy For atoms with more than one electron, the energy is dependent on both n and l ns < np < nd < nf Recall that as n increases, energy increases 2s is higher energy than 1s Combining both 2p is higher energy than 2s

The Third Quantum Number, m_{ℓ}


- Each sublevel contains one or more orbitals, which differ from one another in the value of the third quantum number, m_l
- + Just as ℓ depends on n, m_ℓ depends on ℓ
 - $m_{\ell} = -\ell \dots -1, 0, +1, \dots +\ell$
 - There are 2ℓ + 1 orbitals per sublevel

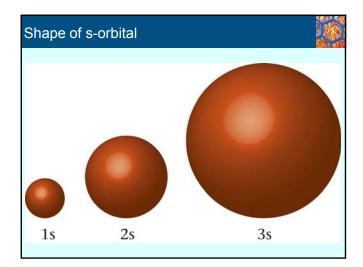
Sublevels s through f

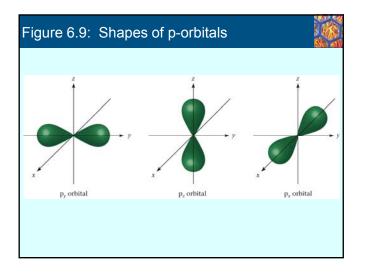
- For an s sublevel, $\ell = 0$, so $m_{\ell} = 0$
- For a p sublevel, l = 1 so $m_l = -1$, 0, or 1
- For a d sublevel, l = 2 so m_l = -2, -1, 0, 1, or 2
- For an f sublevel, l = 3 so $m_l = -3, -2, -1, 0, 1, 2$ or 3

The Fourth Quantum Number, m_s

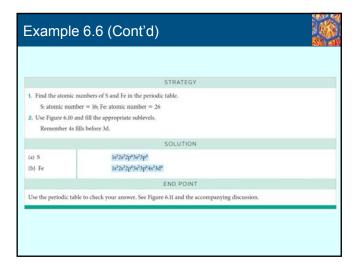
- The last quantum number is associated with the electron spin
 - Two spins are possible, clockwise and counterclockwise
 - There are two values of m_s , + $\frac{1}{2}$ and $\frac{1}{2}$

The Pauli Exclusion Principle No two electrons in the same atom may have the same set of four quantum numbers Two electrons may occupy an orbital; these will differ in spin The spins of two electrons in an orbital will be opposite to each other

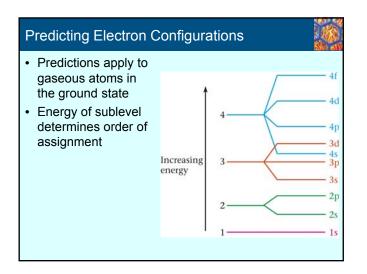

TABLE	6.4 Permissible	Values of the Quantum Numb	ers Through $n = 4$
n	e	me	m,
1	O (1s)	0	$+\frac{1}{2},-\frac{1}{2}$
2	O (2s)	0	$+\frac{1}{2},-\frac{1}{2}$
	1 (2p)	-1, O, +1	$\pm \frac{1}{2}$ for each value of m ,
3	O (3s)	0	$+\frac{1}{2},-\frac{1}{2}$
	1 (3p)	-1, O, +1	$\pm \frac{1}{2}$ for each value of m
	2 (3d)	-2, -1, 0, +1, +2	$\pm \frac{1}{2}$ for each value of \mathbf{m}_{c}
4	O (4s)	0	$+\frac{1}{2},-\frac{1}{2}$
	1 (4p)	-1, O, +1	$\pm \frac{1}{2}$ for each value of m ,
	2 (4d)	-2, -1, 0, +1, +2	$\pm \frac{1}{2}$ for each value of m ,
	3 (4f)	-3, -2, -1, 0, +1, +2, +3	$\pm \frac{1}{2}$ for each value of m ,


Example 6.4	
EXAMPLE 6.4	
Consider the following sets of quantum numbers $(n,\ell,m_\ell,m_t).$ Which ones could orbital involved.	not occur? For the valid sets, identify the
(a) 3, 1, 0, $+\frac{1}{2}$ (b) 1, 1, 0, $-\frac{1}{2}$ (c) 2, 0, 0, $+\frac{1}{2}$	
(d) 4, 3, 2, +1 (e) 2, 1, 0, 0	
STRATEGY	
1. Use the selection rules to identify quantum numbers that are not valid.	
2. Recall the letter and number designations for ℓ .	
$\ell = 0 = s_{i} \ell = 1 = p_{i} \ell = 2 = d_{i} \ell = 3 = f$	continued

EXAMPLE 6.5 (a) What is the capacity for electrons of an s sublevel? A p sublevel? A d sublevel? An f sublevel? (b) What is the total capacity for electrons of the fourth principal level? ANALYSIS Information implied: capacity of an orbital (2 c^-) mumber of orbitals in a sublevel Asked for: (a) number of electrons in a s-4 STRATEGY I. Recall the number designations that correspond to the letter designation of sublevels. 2. Use the rule that tells you how many orbitals there are to a particular sublevel. SOLUTION (a) s subleved f = s = 0; my = 0; 1 orbital × 2c^-/orbital = 2c^-	mple 6.5	
(b) What is the total capacity for electrons of the fourth principal level? Information given: subleveds Information implied: capacity of an orbital (2 e ⁻) Asked for: (a) number of electrons in n a subleved (b) number of electrons in n = 4 STRATEGY 1. Recall the number designations that correspond to the letter designation of sublevels. 2. Use the rule that fells you how many orbitals there are to a particular sublevel. (a) sublevel € = s = 0; m _f = 0; 1 orbital × 2e ⁻ /orbital = 2e ⁻	EXAMPLE 6.5	
Information given: sublevels Information implied: capacity of an orbital (2 ~') mumber of orbitals in a sublevel Asked for: (a) number of electrons in each sublevel (b) number of electrons in each sublevel (b) number of electrons in each sublevel STRATEGY 1. Recall the number designations that correspond to the letter designation of sublevels. 2. Use the rule that tells you how many orbitals there are to a particular sublevel. SOLUTION (a) s sublevel € = s = 0; m _f = 0; 1 orbital × 2c ⁻ /orbital = 2c ⁻		
Information implied: capacity of an orbital (2 e ⁻) number of orbitals in a sublevel Asked for: (a) number of electrons in each sublevel (b) number of electrons in n = 4 STRATEGY 1. Recall the number designations that correspond to the letter designation of sublevels. 2. Use the rule that tells you how many orbitals there are to a particular sublevel. SOLUTION (a) s sublevel ℓ = s = 0; m _f = 0; 1 orbital × 2e ⁻ /orbital = 2e ⁻		ANALYSIS
number of orbitals in a sublevel Asked for: (a) number of electrons in each sublevel (b) number of electrons in n = 4 STRATEGY L. Recall the number designations that correspond to the letter designation of sublevels. 2. Use the rule that tells you how many orbitals there are to a particular sublevel. SOLUTION (a) s sublevel $\ell = s = 0$; $m_f = 0$; 1 orbital $\times 2c^-$ (orbital $= 2c^-$	Information given:	sublevels
(b) number of electrons in n = 4 STRATEGY 1. Recall the number designations that correspond to the letter designation of sublevels. 2. Use the rule that tells you how many orbitals there are to a particular sublevel. SOLUTION (a) s sublevel ℓ = s = 0; mr = 0; 1 orbital × 2c ⁻ /orbital = 2c ⁻	Information implied:	
 Recall the number designations that correspond to the letter designation of sublevels. Use the rule that tells you how many orbitals there are to a particular sublevel. SOLUTION (a) s sublevel \$	Asked for:	
2. Use the rule that tells you how many orbitals there are to a particular sublevel. SOLUTION (a) s sublevel $\ell = s = 0$; $m_\ell = 0$; $1 \text{ orbital} \times 2c^-/\text{orbital} = 2c^-$		STRATEGY
(a) s sublevel $\ell = s = 0; m_\ell = 0; 1 \text{ orbital} \times 2\ell^-/\text{orbital} = 2\ell^-$		
		SOLUTION
$ \begin{array}{ll} \mbox{d sublevel} & \ell = d = 2; \ m_\ell = -2, \ -1, \ 0, \ +1, \ +2; \ 5 \ orbitals \ \times \ 2e^{-j} \ orbital = 10e^{-j} \\ \ f \ sublevel & \ell = f = 3; \ m_\ell = -3, -2, -1, \ 0, \ +1, \ +2, \ +3; \ 7 \ orbitals \ \times \ 2e^{-j} \ orbital = 14e^{-j} \\ \ (b) \ \ Number \ of \ e^{-i} \ in \ n = 4 & n = 4; \ \ell = 0, \ 1, 2, \ 3 \end{array} $	p sublevel d sublevel f sublevel	$ \begin{array}{l} \ell = p = 1; m_\ell = -1, 0, +1; 3 \mbox{ orbitals } \times 2e^-/\mbox{ orbital } = 6e^- \\ \ell = d = 2; m_\ell = -2, -1, 0, +1, +2; 5 \mbox{ orbitals } \times 2e^-/\mbox{ orbital } = 10e^- \\ \ell = f = 3; m_\ell = -3, -2, -1, 0, +1, +2; +3; 7 \mbox{ orbitals } \times 2e^-/\mbox{ orbital } = 14e^- \end{array} $


Atomic Orbital Shapes and Sizes

- Recall that an orbital is a physical representation of the region in space where there is a 90% probability of finding an electron
- We will consider the shapes of two types of orbitals in this chapter
 - s orbitals are spherical, differing only in size (they become larger as n increases)
 - · p orbitals consist of two lobes along an axis
 - There are three axes x, y and z
 - There are three p orbitals p_x , p_y , and p_z


on atoms.	
ANALYSIS	
ms	
ations for (a) S and (b) Fe	continued
	on atoms. ANALYSIS oms f the atoms y diagram ations for (a) S and (b) Fe

Example 6	7	
		Pode - 2 - 1
EXAMPLE 6.7		
For the iodine atom, write		
(a) the electron configurat	ion. (b) the abbreviated electron configuration.	
	ANALYSIS	
Information given:	Identity of the atom (I)	
Information implied:	atomic number of I periodic table or Figure 6.11	
Asked for:	(a) electron configuration (b) abbreviated electron cofiguration	continued
	(c) more entropy of Bernard	

	N8
	STRATEGY
(a) Use Figure 6.11 or any periodic table. Go	across each period in succession, noting the sublevels occupied until you get to I.
(b) Start with the preceding noble gas, kry	pton (Kr).
	SOLUTION
(a) Period 1	1s ²
Period 2	2s ² 2p ⁶
Period 3	3s²3p ⁶
Period 4	$4s^23d^{10}4p^8$
Period 5	5s ² 4d ¹⁰ 5p ⁵
Putting them together	$1s^22s^32p^63s^23p^64s^33d^{20}4p^65s^24d^{20}5p^5$
(b) [36Kr]	Kr accounts for periods 1-4
Abbreviated electron configuration	$[_{34}Kr] + period 5 = [Kr]5s^24d^{10}5p^8$
	END POINT

Electron Configuration in Atoms By applying the rules from which quantum numbers derive, it is possible to assign quantum numbers to each electron in an atom Electron configuration: 1s²2s²2p⁵ Coefficient is n Letter is m_l Superscript is the number of electrons

Electron Configuration from Sublevel Energies

- Once the order of filling of sublevels is known, the electron configuration is readily obtained
 - Experimental evidence provides the relative energies of sublevels
 - Sublevels are ordinarily filled before proceeding to the next energy sublevel
- Examples
 - H, 1s² He, 1s²
 - Li, 1s²2s¹ Be, 1s²2s²
 - B, 1s²2s²2p¹ C 1s²2s²2p²

The Transition Metals

- Consider Ar: 1s²2s²2p⁶3s²3p⁶
 - The next electron enters the 4s
 - K: 1s²2s²2p⁶3s²3p⁶4s¹
 - Ca: 1s²2s²2p⁶3s²3p⁶4s²
 - With the transition metals, the 3d fills after the 4s
 Sc: 1s²2s²2p⁶3s²3p⁶4s²3d¹
 - Following the transition metals, the 4p fills
 - Ga: 1s²2s²2p⁶3s²3p⁶4s²3d¹⁰4p¹

Abbreviated Electron Configurations

- To save writing, abbreviated electron configurations are written
 - Start with the preceding noble gas
 - Complete the configuration with the rest of the electrons in the element
 - S is [Ne]3s²3p⁴
 - Ni is [Ar]4s²3d⁸

Filling of Sublevels and the Periodic Table

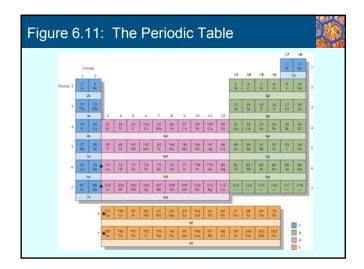
- By using the periodic table, it is possible to quickly write an electron configuration for any element
 - Consider the Group 1 elements
 All have the outer configuration s¹
 - Consider the Group 2 elements
 All have the outer configuration s²
- Atoms of elements in a group have the same distribution of electrons in the outermost principal energy level

Table 6.5

TABLE 6.5 Abbreviated Electron Configurations of Group 1 and 2 Elements

G	roup 1	Gro	oup 2
зLi	[He] 2s¹	₄ Be	[He] 2s ²
11Na	[Ne] 3s¹	₁₂ Mg	[Ne] 3s ²
19K	[Ar] 4s¹	₂₀ Ca	[Ar] 4s²
37Rb	[Kr] 5s¹	38Sr	[Kr] 5s²
55CS	[Xe] 6s¹	₅₆ Ba	[Xe] 6s²

Notes on The Periodic Table


- 1. Elements in Group 1 and 2 fill an *s sublevel*
- 2. Elements in Groups 13-18 fill a *p sublevel*
- 3. Elements of the transition metals fill a *d* sublevel
- The two sets of 14 elements each at the bottom of the periodic table fill f sublevels with a principal quantum number *two less than the period number*
 - First row: lanthanides
 - · Second row: actinides

Example 6.8						
EXAMPLE 6.8						
Construct orbital diagrams	for atoms of sulfur and iron.					
	ANALYSIS					
Information given: identity of the atoms (S and Fe)						
Information implied:	periodic table number designations for ℓ number of orbitals in each sublevel					
Asked for:	orbital diagram for (a) S and (b) Fe					
	STRATEGY					
 Write the electron config See Example 6,6 where t 	gurations for S and Fe. he electron configuration for these atoms is obtained.					
 Recall the number of orb m_ℓ = 2ℓ + 1; 2e⁻ per e 	vitals per sublevel and the number of electrons allowed in each orbital.					
 Apply Hund's rule. 						
Electrons enter singly in	parallel spins when several orbitals of equal energy are available.					

			50	DLUTI	ON						
a) S electron configuration	152252	p63s23p	p ⁴								
Number of orbitals	s = 0;	2(0) +	1 = 1 orbi	tal for	s sublev	rels					
	p = 1;	2(1) +	1 = 3 orbi	tals for	p suble	evels					
Orbital diagram	15	26	21)	38		3р				
	(11)	(11)	(11)(1	1)(11) (†↓) (†‡)(1)(1	Y			
b) Fe electron configuration	1s ² 2s ² 2	p*3s23	o*4s23d*								
Number of orbitals	s = 0; $2(0) + 1 = 1$ orbital for s sublevels										
	p = 1;	2(1) +	1 = 3 orbi	tals for	p suble	evels					
	d = 2	; 2(2) +	1 = 5 orb	itals for	r p subl	levels					
Orbital diagram	15	25	2p		35	31	,	45		3d	
	(11)	(†1)	(11)(11	(†1)	(†↓)	(†1)(†.	(1))	(†1)	(†1)(†)(†)(†)(†)
			EN	D PO	INT						

Exceptions

- Some elements have electron configurations that differ from those expected from the application of the rules we have seen
 - Cr is actually [Ar]4s¹3d⁵
 - Cu is actually [Ar]4s13d10
- These difference arise because
 - The energy levels of the orbitals are close to each other
 - There is a gain in stability by producing a halffilled or a filled shell where possible

Orbital Diagrams of Atoms

- One step beyond the assignment of electrons to orbitals is the depiction of electrons in orbitals
 - Parentheses indicate orbitals (__)
 - Arrows, up and down, indicate electrons (↑↓)
 Recall the m_s quantum number
 - One electron in an atom has m_s = $\frac{1}{2}$ and the other has m_s = $\frac{1}{2}$
 - · Hund's Rule
 - Maximize unpaired spins where possible

Atom		Orbit	al diagram	Electron configuration
В	(↑↓)	$(\uparrow\downarrow)$	(^) () ()	$1s^22s^22p^1$
С	(↑↓)	(↑↓)	(†) (†) ()	$1s^22s^22p^2$
Ν	(↑↓)	$(\uparrow\downarrow)$	(†) (†) (†)	1s ² 2s ² 2p ³
0	(↑↓)	$(\uparrow\downarrow)$	$(\uparrow\downarrow)$ $(\uparrow$) $(\uparrow$)	1s ² 2s ² 2p ⁴
F	(↑↓)	(↑↓)	$(\uparrow\downarrow)$ $(\uparrow\downarrow)$ $(\uparrow$)	1s ² 2s ² 2p ⁵
Ne	(↑↓)	(↑↓)	$(\uparrow\downarrow)$ $(\uparrow\downarrow)$ $(\uparrow\downarrow)$	1s ² 2s ² 2p ⁶

Notes

- In all filled orbitals, the two electrons have opposed spins
- Within a given sublevel there are as many half-filled orbitals as possible
 - This is a direct consequence of Hund's Rule
- · Hund's rule is based on experiment
 - Substances with *unpaired* electrons are *paramagnetic*
 - Substances with *all paired* electrons are *diamagnetic*

Electron Arrangements in Monatomic Ions

 In forming an ion, electrons are *removed from* (*cation*) or *added to (anion*) sublevels in the highest principal energy level

Main Group Ions and Noble Gas Structures

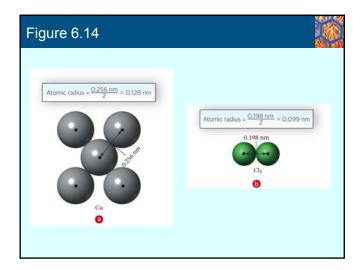
- Cations of Group 1 form +1 ions
- Cations of Group 2 from +2 ions
- Nitrogen forms a -3 ion
- · Elements in the oxygen family form -2 ions
- · Halogens form -1 ions

Figur	re 6.1	13 – 1	lople	e Gas	s Cor	figur	ation	S	
							Н-	He	
	Li+	Be ²⁺			N ³⁻	O ²⁻	F-	Ne	
	Na ⁺	Mg ²⁺	A1 ³⁺			S ²⁻	CI-	Ar	
	K+	Ca ²⁺	Sc ³⁺			Se ²⁻	Br-	Kr	
	Rb+	Sr ²⁺	Y ³⁺			Te ²⁻	Ι-	Xe	
	Cs ⁺	Ba ²⁺	La ³⁺						

Transition Metal Cations

- Transition metal cations do not usually form ions with noble-gas configurations
 - Cations do form, with charges ranging from +1 to higher numbers
 - The outer s electrons are lost before the d electrons; this is the first-in, first-out rule
- Consider Mn
 - Mn is [Ar]4s²3d⁵
 - Mn²⁺ is [Ar]3d⁵

Example 6	.9					
	Sea and					
EXAMPLE 6.9						
Give the electron configura (a) Fe ²⁺ (b) Br ⁻	tion of					
	ANALYSIS					
nformation given: Identity of the ions and their charge: (Fe ²⁺ , Br)						
Information implied:	atomic number of the atoms; electron configuration of the atoms					
Asked for:	electron configuration of the ions					
	STRATEGY					
1. Write the electron confi	guration of each atom.					
	is) or subtract electrons (for cations) from sublevels of the highest n . If there is more than est n , add or subtract electrons in the highest ℓ of that n .					


	SOLUTION	
a) Fe electron configuration	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ⁶	
Cation with +2 charge	subtract 2 electrons	
Highest n	4 with only one sublevel	
Fe2+ electron configuration	$1s^22s^22p^63s^23p^64s^{2-2}3d^6 = 1s^22s^22p^63s^23p^63d^6$	
b) Br electron configuration	$1s^22s^22p^63s^23p^64s^23d^{10}4p^5$	
Anion with -1 charge	add 1 electron	
Highest n	4 with 2 sublevels (s and p)	
Highest ℓ in n	P	
Br ⁻ electron configuration	$1s^22s^22p^63s^23p^64s^23d^{39}4p^{5+1} = 1s^22s^22p^63s^23p^64s^23d^{39}4p^6$	
	END POINT	
The electron configuration for Br is t	he same as that for the noble gas closest to it, krypton.	

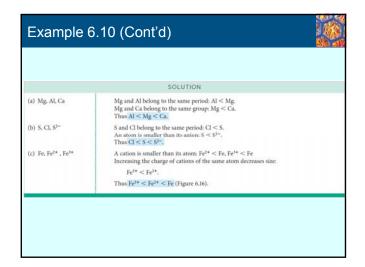
Periodic Trends

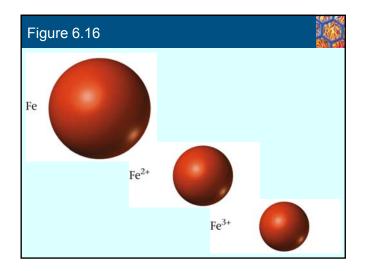
- The chemical and physical properties of elements are a periodic function of atomic number
 - Recall that the number of electrons is equal to the atomic number of an element
 - · Properties to be considered
 - Atomic radius (and ionic radius)
 - Ionization energy
 - Electronegativity

Atomic Radius

- The "size" of an atom is a difficult to define term
- The radius of an atom can be defined and measured, assuming the atom is a sphere
- The trend for the radius of the atom is
 - A decrease in radius across a period
 - An increase in radius down a group

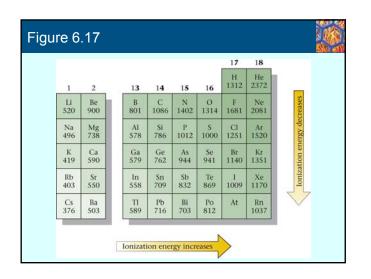
Trends in Atomic Radius


- The increase in radius down a group can be explained by the screening of the electron from the positive charge on the nucleus in the outer shell by the inner electrons; *the effective nuclear charge decreases*
- The decrease in radius across a period can be explained by the fact that electrons are being added to the same principal energy level and do not screen as well; the *effective nuclear charge increases*


Ionic Radius

- Cations are smaller than the atoms from which they form
 - Fewer electrons mean increased effective nuclear charge on those that remain
- Anions are larger than the atoms from which they form
 - More electrons mean that there is more electronelectron repulsion so the size of the ion increases relative to that of the atom

igu	ure (). IC)								<u>.</u>
			oneic nadiž (17 H Q 4017	1 10 S				
								5		bonic radii (nm)	0 0
4112	0.111	6.0MR	84077	0.079	11.065	0.064	1.075	5000	Malt	-	
9	0.140	0	0	0		0	۲	4.000	0.0ml	0.050 6.050	
	0	-	0	-	-	-		E	0.000	e en el	 Image: State Stat
4211	8.167	a 122	- 122 - 122	0.121	0,117				5	0	
		0	0	0		0	0	814	6313	1 ¹⁰	820 820
8.214	8.211	0.142	1.140	0.141	8.1.87	0.111	0.130	alas	0.130	4.0%	
				0							
8.312	8.757	8.175	NIN	0,144	0.141	-	1.140				


Example 6.10 EXAMPLE 6.10 Using only the periodic table, arrange each of the following sets of atoms and ions in order of increasing size. (a) Mg, Al, Ca (b) S, Cl, S¹⁻ (c) Fe, Fe¹⁺, Fe¹⁺ STRATEGY Recall the following: • The definition of a period and a group in the periodic table. • The radius decreases across a period and increases going down a group. • An atom is larger than its cation but smaller than its anion.

Ionization Energy

- The ionization energy is a measure of difficulty in removing an electron from a gaseous atom
- M (g) → M⁺ (g) + e⁻
 - Ionization energy increases across a period from left to right
 - Ionization energy decreases down a family from top to bottom

Example 6.	11
EXAMPLE 6:11	
Consider the three elements	s C, N, and Si. Using only the periodic table, predict which of the three elements has
(a) the largest atomic radiu	s; the smallest atomic radius.
(b) the largest ionization er	nergy; the smallest ionization energy.
	STRATEGY
both silicon and nitroger	ents form a block (N next to C and Si below C), in the periodic table, it is convenient to compare t to carbon. mic radius and ionization energy.
	SOLUTION
(a) atomic radius	C > N; C < Si
	Si is the largest atom, N is the smallest.
(b) ionization energy	$C \le N_i C \ge S_i$
	Si has the smallest first ionization energy.
	N has the largest first ionization energy.
	END POINT
Check your answers against	Figures 6.15 and 6.17.

Electronegativity

- Electronegativity is the ability of an atom to attract electrons
 - Linus Pauling
 - Fluorine is the most electronegative element
 - · Cs is the least electronegative element
 - As electronegativity increases, the formation of an anion becomes more likely
- Trends
 - · Electronegativity increases across a period
 - · Electronegativity decreases down a family

TABLE 6.6 Electronegativity Values							
H 2.2							_*
Li	Be	в	С	N	0	F	_*
1.0	1.6	2.0	2.5	3.0	3.5	4.0	
Na	Mg	AI	Si	P	s	CI	-*
0.9	1.3	1.6	1.9	2.2	2.6	3.2	
к	Ca	Sc	Ge	As	Se	Br	Kr
0.8	1.O	1.4	2.0	2.2	2.5	3.0	3.3
Rb	Sr	Y	Sn	Sb	Te	1	Xe
0.8	0.9	1.2	1.9	2.0	2.1	2.7	3.0
Cs	Ba						
0.8	0.9						

Key Concepts

- 1. Relate wavelength, frequency and energy
- 2. Use the Bohr model to identify lines in the hydrogen spectrum
- 3. Identify the quantum numbers of electrons in atoms
- 4. Derive the electron capacity of energy levels
- 5. Write electron configurations, full and abbreviated, for atoms and ions
- 6. Draw orbital diagrams for atoms and ions
- 7. Identify periodic trends in radii, ionization energy and electronegativity