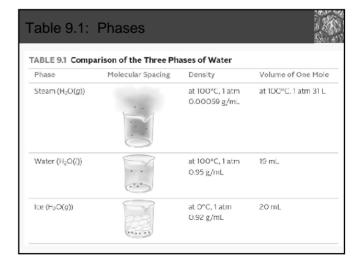
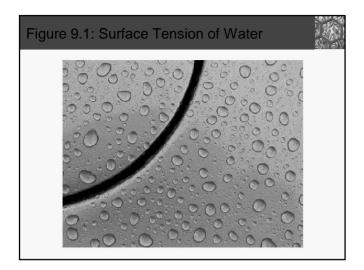


Outline

- 1. Liquid-vapor equilibrium
- 2. Phase diagrams
- 1. Comparing Solids, Liquids and Gases
- 3. Molecular substances; intermolecular forces
- 4. Network covalent, ionic and metallic solids
- 5. Crystal structures

Recall Gases


- At ordinary temperatures and pressures, all gases follow the ideal gas law
- There is no equivalent equation of state that can be written to correlate the properties of liquids and solids


Liquids and Solids Differ from Gases

- 1. Molecules are much closer together in liquids and solids than in gases
 - In gases, molecules are separated by ten or more molecular diameters
 - In liquids and solids, the molecules are in contact with each other
- 2. Intermolecular forces play a major role in the behavior of liquids and solids, whereas they are negligible in gases

Behavior of Liquids and Solids

- · Phase equilibria
 - · Gas-liquid
 - Vapor pressure
 - Boiling point
 - Critical properties
- Relationships
 - Particle structure
 - Interparticle forces
 - · Physical properties

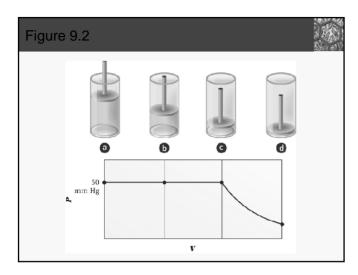

Liquid-Vapor Equilibrium

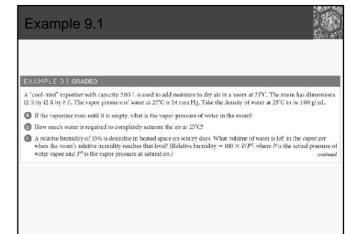
· Vaporization

- Liquid is converted into a gas
- In an open container, evaporation continues until all the liquid is converted into vapor
- In a closed container, the process of vaporization is countered by the process of condensation:
 - Liquid ≑ Vapor
 - The double arrow indicates a *dynamic equilibrium*

Equilibrium

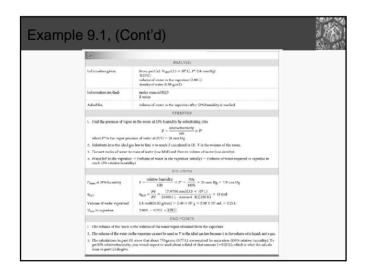
- When the rate at which the liquid vaporizes is equal to the rate at which the vapor condenses, a *dynamic equilibrium is established*
- The liquid level in the container does not change
- Molecules are entering the vapor phase from the liquid and condensing from the vapor phase to the liquid at the same rate

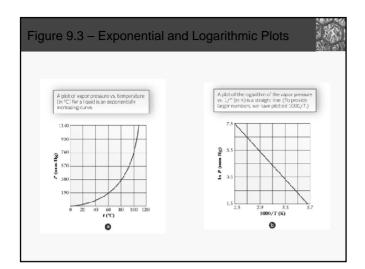



Vapor Pressure

- Once equilibrium between a liquid and its vapor is reached, the number of molecules per unit volume does not change with time
 - The pressure exerted by the vapor over the liquid remains constant
- · The vapor pressure is temperature dependent

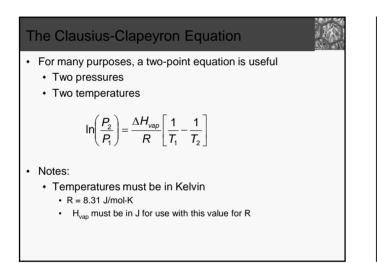
Pressure and Volume

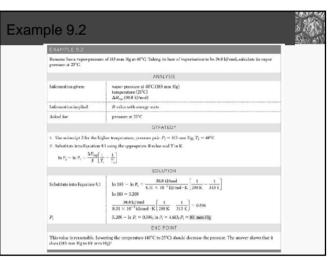

 As long as both liquid and vapor are present, the vapor pressure is independent of the volume of the container



Example	e 9.1, (Co	nt'd)	
	۲	ANALYSIS	
	Information given:	volume of vaportier (2001), T (25°C) room dimensions (12 ft × 12 ft × 6 k) vaporpressure of water at 25°C (24 nm Hg) density or water (11.0 gr/m).	
	Information implied:	volume of water to be "vigormod" molar mass of H ₂ O ft ⁴ to 1 convenion factor R value	
	Asked for:	vapor pressure in the noon when all the water is raportaed	
		STRATEGY	
	 Find the volume of the s Find the motion of water, Reference on the second second		
		alaulasedpressare from (16	
		SOLUTION	
	$V_{max} = V_{gas}$ B_{stars} P_{col}	$(13 \times 12 \times 9)$ B ¹ × $\frac{33.52}{11^6}$ = 3.3 × 10 ⁴ L 2.00 L × $\frac{1000}{11}$ × $\frac{100}{100}$ $\frac{1}{100}$ × $\frac{1000}{100}$ $\frac{1}{1000}$ = 111 mal $P_{ch} = \frac{eC}{2} = \frac{(11 \text{ mol})(2.08 \times 1 \cdot \text{ sectors} 1 \cdot \text{ sectors} 8)}{1000}$ = 6.02 sectors 4.2 msHg	
	Post Check assumption	$r_{ch} = \frac{r}{r} - \frac{1}{r} - \frac{33 \times 16^4 \text{ L}}{33 \times 10^6 \text{ L}} = 60 \text{ mm/sg}$ vacorpressure of water at 25°C $\approx 23 \text{ mm/Hg}$, $P_{ch} \approx 24 \text{ mm/Hg}$. $P_{ch} \approx 24 \text{ mm/Hg}$ heasangthen is wong. The vapor passare of water in the mon is (24 mm/Hg).	

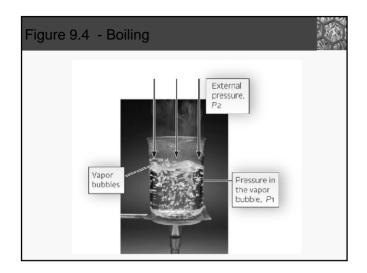
Example 9	.1, (Cont'd)	8 57 N
(b)		
Ψ.	ANALYSIS	
Information given:	From part (a): P_{vaper} (24 mm Hg), V_{vaper} (3.3 × 10 ⁴ L) T(25°C)	
Information implied:	molar mass of H2O R value	
Asked for:	volume of water required to saturate the room	continued
	STRATEGY	
1. Substitute into the ideal	gas law to find nsteam.	
 Moles of vapor = moles 	of water. Convert to mass of water.	
	SOLUTION	
n _{H,O}	$n_{\rm H_2O} = \frac{FV}{RT} = \frac{(24760 \text{ stm})(3.3 \times 10^4 \text{ L})}{(0.0821 \text{ L} \cdot \text{ stm/mol} \cdot \text{K})(298 \text{ K})} = 43 \text{ mol}$	
mass _{H,O}	$(43 \text{ mol})(18.02 \text{ g/mol}) = 7.7 \times 10^2 \text{ g}$	




Vapor Pressure and Temperature	
 The vapor pressure of a liquid increases as the temperature rises Increase in P is not linear with temperature Water VP is 24 mmHg at 25° C VP is 92 mmHg at 50° C 	
 To make a linear plot, the natural logarithm is required 	

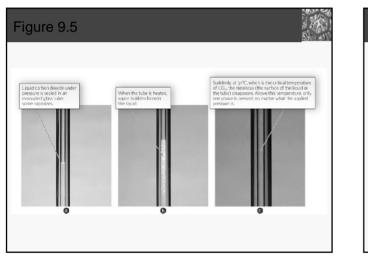
Vapor Pressure Equation

$$\ln P = -\frac{\Delta H_{vap}}{RT} + b$$



Boiling Point

- When heat is applied to a liquid in an open container, bubbles eventually form at the bottom
 - At a certain temperature, large bubbles form throughout the liquid; i.e., the liquid boils
 - The temperature at which a liquid boils depends on the pressure above it
 - If the pressure is 1 atm, the temperature at which the liquid boils is called the normal boiling point
 - When the term boiling point is used, the normal boiling point is implied
 - The boiling point is the temperature at which the vapor pressure equals the prevailing pressure


Boiling Point and Prevailing Pressure

- SK.
- Variation on atmospheric pressure will change the boiling point
 - At high elevation, atmospheric pressure is lower, so the boiling point is lower
 - To elevate the boiling point and allow food to cook more quickly, a pressure cooker can be used

Carbon Dioxide

- · Consider carbon dioxide
 - CO₂ as a liquid is sealed into an evacuated glass tube
 - As the tube is heated, some liquid is converted to vapor, and the pressure rises to 44 atm at 10 $^\circ~$ C
 - At 31 $^\circ~$ C, the pressure is 73 atm
 - Suddenly, the meniscus between liquid and vapor disappears and only vapor is present

Critical Temperature and Pressure For every liquid, there is a temperature above which only vapor can exist This is the *critical temperature*At this temperature, the pressure is called the *critical pressure*

• Together, the critical temperature and pressure are called the *critical point*

Permaner		eratures (°C) Condensable (Sases	Liquids	
Helium	-268	Carbon dioxide	31	Ethyl ether	194
lydrogen	-240	Ethane	32	Ethyl alcohol	243
Vitrogen	-147	Propane	97	Benzene	289
Argon	-122	Ammonia	132	Bromine	311
Oxygen	-119	Chlorine	144	Water	374
Methane	-82	Sulfur dioxide	158		

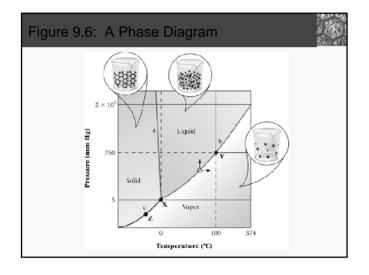
Permanent Gases

- Permanent gases are substances with critical temperatures below 25 $^\circ\,$ C.
 - Usually stored in cylinders at 150 atm or greater
 - · Only vapor is present in the tank
 - Pressure in the tank drops as the gas is released

Condensable Gases

- · Condensable gases have critical temperatures above 25 $^{\circ}$ C.
 - · Carbon dioxide
 - Hydrocarbon gases
 - Ammonia
 - Chlorine

Example 9.3

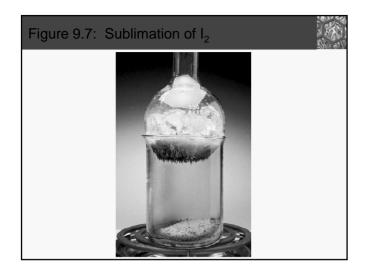

(a) What phase(s) is (are) present?

1. Use the phase diagram in Figure 9.6.

- Sulfur dioxide
- · For these substances, the liquid-vapor equilibrium accounts for the pressure in the tank
 - · Pressure will not change until all the liquid is gone

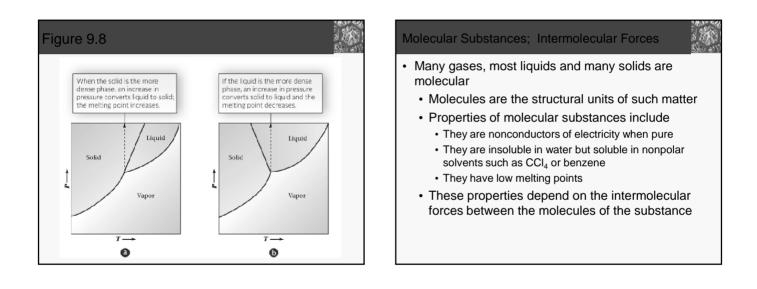
Phase Diagrams

- · Phase diagrams are graphical representations of the pressure and temperature dependence of a pure substance
 - · Pressure on the y-axis
 - · Temperature on the x-axis
- · Three places to consider
 - · In a region, one phase exists
 - · On a line, two phases exist in equilibrium
 - · At a point, three phases exist in equilibrium

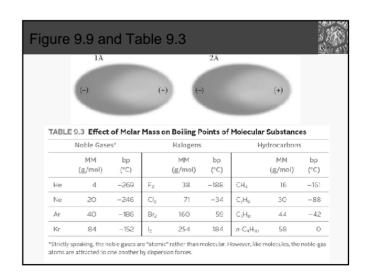

Phase Diagram of Water

- · Curve b (green) is the vapor pressure-temperature curve of liquid water
- · Curve c (red) is the vapor pressure curve of ice
- · Line a (blue) gives the temperature-pressure dependence for ice in equilibrium with water
- Point X is the triple point
 - · All three phases are in equilibrium
 - There is only one triple point for a pure substance
 - For water, the triple point is at 0.01 $^{\circ}$ C and 4.56 mmHg

Consider a sample of H-O at point X in Figure 9.5 (b) If the temperature of the sample were reduced at constant pressure, what would happen? (c) How would you convert the sample to vapor without changing the temperature STRATEGY 2. Note that P increases moving up vertically; T increases moving to the right SOLUTION (a) X is the triple point. Ice, liquid water, and water vapor are present. (b) Move to the left to reduce T. This penetrates the solid area, which implies that the sample freezes completely (c) Reduce the pressure to below the triple point value, perhaps to 4 mm Hg.


Sublimation

- · Sublimation is the process by which a solid passes directly into the vapor phase without first being converted to a liquid
 - Sublimation can happen only at a temperature below the triple point
 - · Water can sublime if the pressure is reduced
 - · Freeze drying
 - · Cold winter days
 - · lodine sublimes readily because its triple point pressure is much higher than that of water


Melting Point

- For a pure substance, the melting point and freezing point are identical
 - The effect of pressure on the freezing point is very small
 - An increase in pressure favors the more dense phase
 - This is usually the solid phase
 - · Water is denser than ice, so water is anomalous
 - The slope of the solid-liquid line depicts the behavior of the freezing point as pressure is increased or decreased
 - Positive slope: solid is denser than liquid
 - Negative slope: liquid is denser than solid

Dispersion Forces

- · All substances have dispersion forces
 - · Also called London or van der Waals forces
 - · Stem from induced dipoles in molecules
 - Motion of electrons in the molecule causes transient dipoles to form
 - Increase with the number of electrons in the molecule
 - As molar mass increases, dispersion forces become stronger

Dipole Forces

- Molecules with permanent dipoles display dipole forces
 - Dispersion forces are also present but are much weaker
 - Adjacent molecules line up so that the negative pole of one molecule is as close as possible to the positive pole of another molecule
 - Result is an electrostatic attractive force that causes molecules to associate with each other

Figure 9.10	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	

able 9.	4				8 0 S
ABLE 9.4 B	oiling Points of	Nonpolar V	/ersus Polar Su	bstances	
	Nonpolar			Polar	
	MM	bp		MM	bp
Formula	(g/mol)	(°C)	Formula	(g/mol)	(°C)
N ₂	28	-196	CO	28	-192
SiH ₄	32	-112	PH3	34	-88
GeH₄	77	-90	AsH ₃	78	-62
Br ₂	160	59	ICI	162	97

Hydrogen Bonding

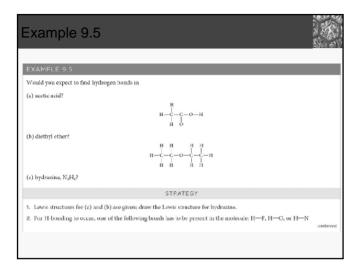
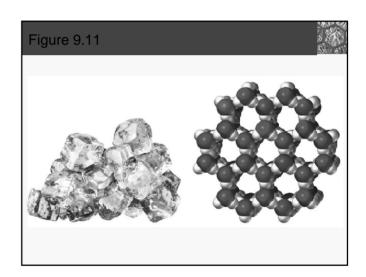
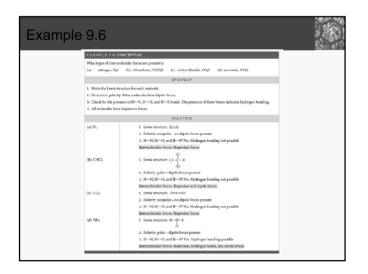

- · Unusually strong type of dipole force
 - H attached to a(n) N, O, or F
 - The H from one molecule can associate itself with the negative end of the dipole of another
 - Dipole arises from the difference in the electronegativity between H and (N, O, or F)
 - Small size of H allows the unshared pair from the negative end of the dipole to approach the H closely
 - HF, H₂O and NH₃: unusually high boiling points as a result of hydrogen bonding

Table 9.5

TABLE 9.5 Effect of Hydrogen Bonding on Boiling Point

	pb (°C)		pb (°C)		bp (°C)
NHa	-33	H ₂ O	100	HF	19
ΡH ₃	-88	H ₂ S	-60	HCI	-85
AsH3	-63	H ₂ Se	-42	HBr	-67
SbH3	-18	HaTe	-2	HI	-35

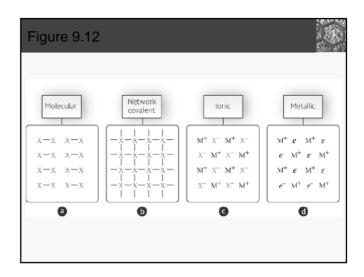

Note: Molecules in blue show hydrogen bonding.



	SOLUTION
(a) 1. Lewis structure:	Given: $H = \begin{pmatrix} N \\ -C \\ H \\ -O \end{pmatrix}$
 H—F, H—O, or H—N? (b) Lewis structure: 	Vess hydrogen bonding is present. N H H H Given: H – – – – – – – – – – – – – – – – – –
 H—F, H—O, or H—N? (c) Lewis structure: 	No. The presence of O and H atoms in the molecule does not mean that H-bending can occur. $H - \frac{N-N}{N-H}$
2. H−F, H−O, or H−N?	Yes, H-bonding can occur.
	END POINT

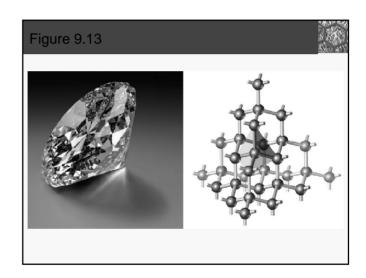
Water

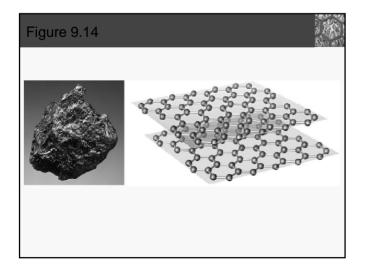
- · Hydrogen bonding in water accounts for
 - · High specific heat
 - High boiling point
 - Higher density of the liquid phase relative to the solid


Covalent Bonds vs. Intermolecular Forces

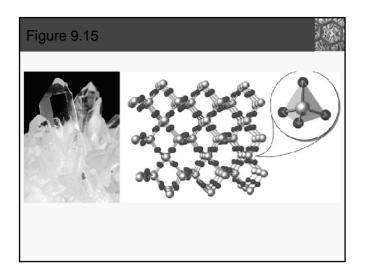
- · Three types of intermolecular forces
 - Dispersion
 - Dipole
 - Hydrogen bond
- All three intermolecular forces are weak relative to the strength of a covalent bond
 - Attractive energy in ice is 50 kJ/mol
 - Covalent bond in water is 928 kJ/mol

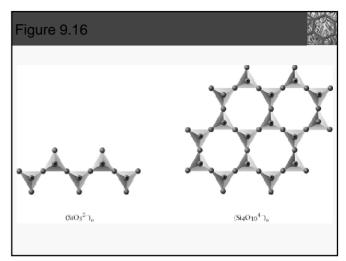
Solids: Network Covalent, Ionic and Metallic




- · Network covalent solids
 - · Continuous network of covalent bonds
 - Crystal is one large molecule
- · Ionic solids
 - Oppositely-charged ions held together by strong electrical forces
- · Metallic solids
 - Structural unit are +1, +2 and +3 metals with associated electrons

Network Covalent Solids


- · Characteristics
 - High melting points, often above 1000 $^\circ~$ C
 - Covalent bonds must be broken to melt the substance
- Examples
 - Graphite and diamond: allotropes
 - · Diamond is three-dimensional and tetrahedral
 - · Graphite is two-dimensional and planar



Compounds of Silicon

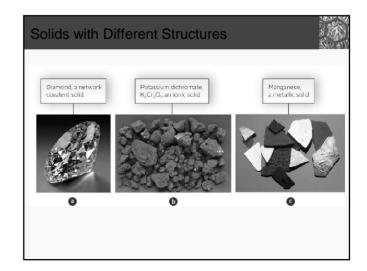
- Quartz
 - SiO₂
 - · Major component of sand
 - Glass
 - Layered structures
 - Talc
 - Silicate lattices
 - Chains in 1, 2 and 3 dimensions
 - Zeolites

Ionic Solids

Characteristics

- Nonvolatile; high melting points (600-2000 $^{\circ}$ C)
- Nonconductors of electricity in the solid state
 Conduct when melted or dissolved in water
- Many are soluble in water but not in nonpolar solvents

Strengths of Ionic Bonds • Coulomb's Law $E = \frac{k \times Q_1 \times Q_2}{E}$

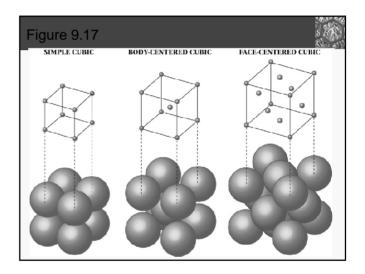

$E = \frac{d}{d}$ $d = r_{cation} + r_{anion}$

- Strength of ionic bond depends on
 - Charges of the ions (higher charges produce stronger bonds)
 - Sizes of the ions (smaller internuclear distances result in stronger bonds)

Metals

· Characteristics of metals

- High electrical conductivity
 - Highly mobile electrons in structure
- High thermal conductivity
 - Heat is carried through the structure by collision between electrons
- Ductility and malleability
 - Can be drawn into wire or hammered into sheets
- Luster
 - Polished metal surfaces reflect light
- Insolubility in water and other common solvents



Molecular Moleculars (a) nonpolar Covarent bond Dispersion Low mp. bp: often gas or liquid at 25°C;nonconductors; inscilable in water, soliable in organic solvents Ufg CCQ4 water, soliable in organic solvents (b) pclar Covarent bond Dispersion, dipol; Similar to nonpolar butgementally water-soluble water-soluble CCQ4 water-soluble water-soluble NHJ water-soluble solution Covarent bond Network covalent Atoms — Covalent bond Fard solids with very high meting common solvents C corrinor solvents ionic lens — Ionic bond Fight mp: coaductors in molten state mater soluble in organic solvents NaCL Metallic Cations, — Metallic bend Variable mp. good conductors in solvents CaCO	able 9.	6				3.87
Structural Particles Forces Within Particles Forces Between Particles Frogerties Exam Melecular Notecules (a) nonpolar Covalent bond Dispersion (b) pclar Dispersion (c) action of the soluble in organic solvents Ils 25°C innonductors; insoluble in vate; soluble in organic solvents Ils 25°C innonductors; insoluble in vate; soluble in organic solvents HCI higher inparticipation wate; soluble in vate; soluble in vate; soluble Ils 25°C innonductors; insoluble in vate; soluble Cla vate; soluble in vate; soluble HCI higher inparticipation (c) points; nonconductors; insoluble in common solvents C points; nonconductors; insoluble in common solvents C points; nonconductors; in molten state requery actions; in molten state requery actions; insoluble in organic solvents NaCI Metallic Cations, - Metallichend Variable in organic solvents; insoluble in common solvents						Sec.
Structural Particles Forces Within Particles Forces Between Particles Frogerties Exam Melecular Notecules (a) nonpolar Covalent bond Dispersion (b) pclar Dispersion (c) action of the soluble in organic solvents Ils 25°C innonductors; insoluble in vate; soluble in organic solvents Ils 25°C innonductors; insoluble in vate; soluble in organic solvents HCI higher inparticipation wate; soluble in vate; soluble in vate; soluble Ils 25°C innonductors; insoluble in vate; soluble Cla vate; soluble in vate; soluble HCI higher inparticipation (c) points; nonconductors; insoluble in common solvents C points; nonconductors; insoluble in common solvents C points; nonconductors; in molten state requery actions; in molten state requery actions; insoluble in organic solvents NaCI Metallic Cations, - Metallichend Variable in organic solvents; insoluble in common solvents						
Type Particles Pariticles Particles Paritited Particles Pa	BLE 9.6 Structu	res and Proper	ties of Types of S	ubstances		
Molecular Molecular Covalent bond Dispersion Low mp. bpoften gas or liquid at 25°C, nonconductors; inscilable in CCL water, abulbe in organic solvents Up (b) pclar Covalent bond Dispersion, dipole, sinsifie to nonpolar butgenerally H CL Hong water, soluble in organic solvents CCL water, bond hong water, soluble in organic solvents NH, solvent in the solvent in t			Forces Within	Forces Between		
(a) nonpolar Covalent bond Dispersion Low mp. tpx often gas or fiquid at 255C monoduters insolution mater. soluble in organic solvents Ilj (b) pclar Covalent bond Dispersion, dipoli 255C monoduters insolution mater. soluble in organic solvents HCI higher mp. adby, mer likely tobe FCI higher mp. adby, mer likely tobe	Type	Particles	Particles	Particles	Properties	Examples
COL 255Crimenromductors insoluble in myanic soluble in organic solvents COL (b) polar Covalent bond Dispersion, dipole, Similar to incerpolar but generalize solvents HCI (b) polar Covalent bond Dispersion, dipole, Similar to incerpolar but generalize solvents HCI Network covalent Altorns — Covalent bond Hard solids with very high meting polytics in soluble in organic solvents Cio onic lens — Lonic bond High mp; conductors in molten state might be normalicable in organic conductors in molten state might be normalicable in organic conductors in contents NaCl Metallic Cations, — Metallic bend Variable mp; good conductors in solidity in the solidity	Molecular	Molecules				
(b) pclar Covatent bond Dispersion, dipole, H bord water, soluble in organic solvents March NH, Similar to nonpolar but generally higher np and bp, more likely to ba water-solube March NH, NH, NH, NH, NH, NH, NH, NH, NH, NH,		(a) nonpolar	Covalent bond	Dispersion	Low mp, bp; often gas or liquid at	Ha
(b) pclar Covalent bond Dispersion, dipols, Hornd Smilar to nonpolar but generally highor mp and by mere linkly to be water-soluble HCI highor mp and by mere linkly to be water-soluble HCI highor mp and by mere linkly to be water-soluble HCI highor mp and by material soluble HCI highor highor mp and by highor mp and by						CCI ₄
Hbord higher-main and big, mare likely to be water-soluble NH ₃ Network covalent Atoms — Covalent bond Faird solids with very high me tring points nonconductors; inscluble in common solvents C SiO2 onic lens — Icnic bond Fight mg: conductors in molten state mwater solution; often solution in molten state NaCI MgO Metallic Cations, — Metallic bend Variable mg. good conductors in isolitig						
water-solube water-solube Network covalent Atoms — Coxalent bond paints onick with very high metting paints; noncoductors; insoluble in common solvents C ionic Ions — Ionic bond High my: conductors in molten state or water isolution; of the soluble in organic solvents NaCl PigO variate; insoluble in organic solvents NaCl CaCO Metallic Cations, — Metallic bond Variable mg; good conductors in solidity in Solidity		(b) polar	Covalent bond			
ionic Iens – Icnic bond Fight moconductors in molten state NaCl water solutions of the solution of the soluti				Hoond		NH ₃
common solvents common solvents common solvents common solvents common solvents common solvents matching matching conductors in soluble in mgo varier, insulable in organic solvents ca:CO varies insulable i	Network covalent	Atoms	_	Covalent bond	Hard solids with very high melting	С
or water solution; often soluble n PigO water; insoluble in organic solvents CaCO Metallic Cations, Metallic bond Variable mp; good conductors in solid; Na						SiO ₂
vater, insoluble in organic solvents CaCO Metallic Cations, — Metallic bond Variable mp; good conductors in solid; Na	onic	lons	-	Ionic bond	High mp; conductors in molten state	NaCI
Metallic Cations, Metallic bond Variable mp.good conductors in solid; Na					or water solution; often soluble in	MgO
					water, insoluble in organic solvents	CaCO ₃
mobile insoluble in common solvents. Fe	4etalli:	Cations,		Metallic bond	Variable mp; good conductors in solid;	Na
instruction in commence in commence in commence		mobile			insoluble in common solvents	Fe
electrons		electrons				
alectrons		electrons				

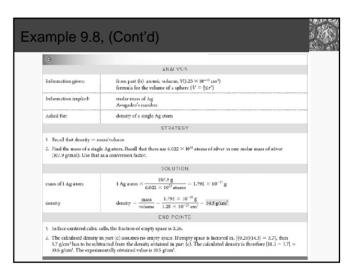
ample 9.7	
EXAMPLE 9.7 CC	NCEPTUAL
For each species in col	umn A, choose the description in column B that best applies.
A	В
(a) CO ₂	(e) ionic, high-melting
(b) CuSO ₄	(f) liquid metal, good conductor
(c) 3iO2	(g) polar molecule, soluble in water
(d) Hg	(h) ionic, insoluble in water
	(i) network covalent, high-melting
	(j) nonpolar molecule, gas at 25°C
	STRATEGY
 Characterize each s Find the appropriate 	pecies with respect to type, forces within and between particles, and if necessary, physical properties, te matches.
	SOLUTION
(e) CO2	molecule, nonpoler
	Only match is (i) even if you did not know that CO ₂ is a gas at 25°C.
(b) CuSO ₄	ionic, water soluble
	Only match is (e) even if you did not know that CuSO4 has a high melting point.
(c) 51O2	network covalent
	Only match is (i).
(d) Hg	metal, liquid at room temperature
	Only match is (f).

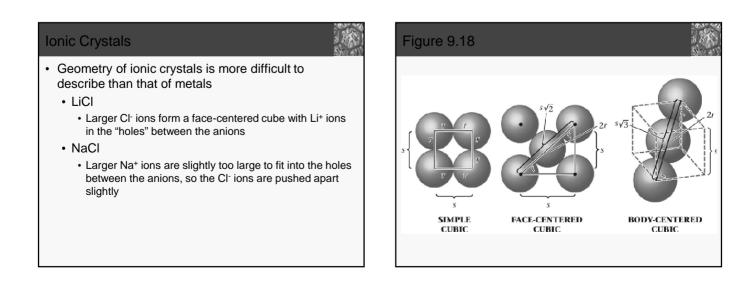
Crystal Structures

- · Solids crystallize into definite geometric forms
 - · Many times, the naked eye can see the crystal structure
 - NaCl forms cubic crystals

Crystal Building Blocks

- · Crystals have definite geometric forms because the atoms or ions are arranged in definite, threedimensional patterns
- · Metals crystallize into one of three unit cells
 - 1. Simple cubic (SC): eight atoms at the corners
 - 2. Face centered cubic (FCC): simple cubic plus one atom in the center of each face
 - 3. Body-centered cubic (BCC): simple cubic plus one atom in the center of the cube


Crystal Building Blocks, Cont'd • Three other ways to look at the crystalline unit cells: 1. Number of atoms per unit cell


- - SC: 1 FCC: 4 BCC: 2
- 2. Relation between side of cell (s) and radius of atom or ion (r)
- SC: 2r = s FCC: $4r = s\sqrt{2}$ BCC: $4r = s\sqrt{3}$ 3. Percentage of empty space
- SC: 47.5 FCC: 32.0 BCC: 26.0

ABLE 9.7 Properties of Cubic Unit Cells			
	Simple	BCC	FCC
Number of atoms per unit cell	1	2	4
Relation between side of cell, s, and atomic radius, r	2r = s	$4r = s\sqrt{3}$	$4r = s\sqrt{2}$
% of empty space	47.6	32.0	26.0

Example 9.8		
EXAMPLE 9.8 GR	ADED	
Silver is a metal comm 0.407 nm on an edge.	only used in jewelry and photography. It crystallizes with a face-centered cubic (FCC) unit cell	
What is the atomic	radius of silver in cm? (1 nm = 10^{-7} cm)	
What is the volum	of a single silver atom? (The volume of a spherical ball of radius r is $V = \frac{4}{3}\pi r^3$.)	
What is the density	of a single silver atom?	
۲		-
	ANALYSIS	
Information given:	type of cubic cell (face-centered) length of side, (0.407 nm) mut com scoversion (1 nm = $1 \times 10^{-7} \text{ cm})$	
Information implied:	side and atomic radius relationship in a face-centered cubic cell	
Asked for:	atomic radius of silver in cm	
	STRATEGY	
 Relate the atomic ra Substitute into the e Convert nm to cm. 	due, r, to the side of the cube, s, m a face-centered cubic cell (FGC). See Table 9.7, quitton 4r = $r\sqrt{2}$.	
	SOLUTION	
$4r = s\sqrt{2}$	$r = \frac{0.407 \text{ nm} (\sqrt{2})}{4} = 0.144 \text{ nm} \times \frac{1 \times 10^{-7} \text{ cm}}{1 \text{ nm}} = 1.44 \times 10^{-8} \text{ cm}$	

Example 9.8, (Cont'd)		×.
		<u> 2016: 91</u>
ь		
	ANALYSIS	
Information given:	from part (a); atomic radius, r (1.44 \times 10 ⁻⁸ cm) formula for the volume of a sphere ($V = \frac{4}{3}\pi r^3$)	
Asked for:	volume of a single Ag atom	continued
	STRATEGY	
Assume that the atom is a	perfect sphere and substitute into the formula for the volume of a sphere.	
	SOLUTION	
V	$V = \frac{4}{3}\pi r^3 = \frac{4}{3}\pi (1.44 \times 10^{-8} \mathrm{cm})^3 = 1.25 \times 10^{-23} \mathrm{cm}^3$	

-	9.9
EXAMPLE 9.9	
"top" of the cell and t	The length of an edge of a cubic cell, s. is the distance between the center of an atom or ion at the be center of the atom or ion at the "bottem." Taking the ionic reddi of Lt^* , Na^* , and Cl^- to be and 0.081 nm, respectively, determines for
(a) NaCl (b) LIC	x
	STRATEGY
Use Figure 9.19 to det	ermine along which lines the ions touch.
	SOLUTION
(a) NaCl	The atoms touch along a side. $s = 1 \operatorname{rof} \operatorname{CI}^+ + 2 \operatorname{rof} \operatorname{Na}^+ + 1 \operatorname{rof} \operatorname{CI}^+$ $= 0.481 \operatorname{nm} + 2(0.095 \operatorname{am}) + 0.481 \operatorname{nm} = 0.552 \operatorname{nm}$
(b) LiCl	The chloride atoms touch along a face diagonal. $c = 1 \operatorname{rof} \operatorname{CI}^+ + 2 \operatorname{rof} \operatorname{CI}^+ + 1 \operatorname{rof} \operatorname{CI}^- = 4 \operatorname{rof} \operatorname{CI}^-$ $= 4(0.381 \operatorname{nm}) = 0.724 \operatorname{nm}$ length of face diagonal = $i\sqrt{2} = (0.724 \operatorname{nm})(\sqrt{2}) = 0.512 \operatorname{nm}$

Key Concepts

- 1. Use the ideal gas law to determine whether a liquid will completely vaporize in a sealed container
- 2. Use the Clausius-Clapeyron equation to relate vapor pressure to temperature
- 3. Use a phase diagram to determine the phases present given the pressure and temperature
- 4. Identify the type of intermolecular forces in different substances
- 5. Classify substances as ionic, molecular, network covalent, or metallic
- 6. Relate unit cell dimensions to atomic or ionic radii