

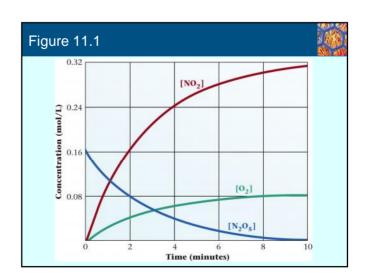
Outline

- 1. Meaning of reaction rate
- 2. Reaction rate and concentration
- 3. Reactant concentration and time
- 4. Models for reaction rate
- 5. Reaction rate and temperature
- 6. Catalysis
- 7. Reaction mechanisms

Thermochemistry

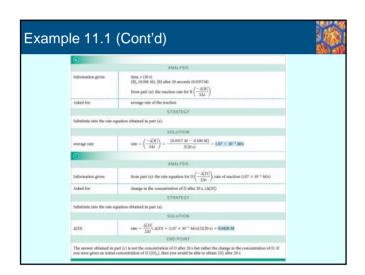
- · We have looked at the energy involved in a chemical reaction
 - · Chapter 8
 - Some reactions evolve heat (exothermic)
 - Some reactions absorb heat (endothermic)
 - In order for a chemical reaction to be feasible, it must occur at a reasonable rate

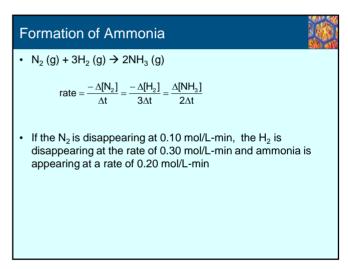
Factors that Influence the Rate of Reaction

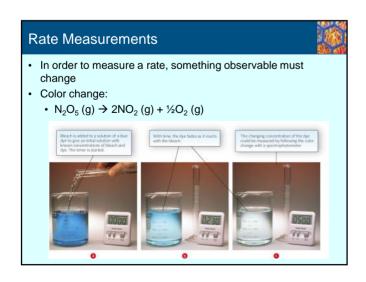

- · Concentration of reactants
- · Process by which the reaction takes place
- Temperature
- · Presence of a catalyst
- · Reaction mechanism

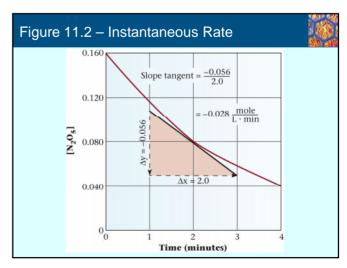
Meaning of Reaction Rate




- $N_2O_5(g) \rightarrow 2NO_2(g) + \frac{1}{2}O_2(g)$
 - · What happens to the concentrations with time?
 - [N2O5] decreases
 - [NO₂] and [O₂] increase
 - · Mathematically, we can express the changes as


$$\begin{split} &-\Delta[\mathsf{N}_2\mathsf{O}_5] = \frac{\Delta[\mathsf{NO}_2]}{2} = \frac{\Delta[\mathsf{O}_2]}{\frac{1}{2}} \\ &\mathsf{rate} = -\frac{\Delta[\mathsf{N}_2\mathsf{O}_5]}{\Delta t} = \frac{\Delta[\mathsf{NO}_2]}{2\Delta t} = \frac{\Delta[\mathsf{O}_2]}{\frac{1}{2}\Delta t} \end{split}$$




General Form of the Rate Relationship • For a reaction where $aA + bB \rightarrow cC + dD$ $rate = \frac{-\Delta[A]}{a\Delta t} = \frac{-\Delta[B]}{b\Delta t} = \frac{\Delta[C]}{c\Delta t} = \frac{\Delta[D]}{d\Delta t}$

Rate Measurements, (Cont'd)

- $N_2O_5(g) \rightarrow 2NO_2(g) + \frac{1}{2}O_2(g)$
- The rate of a reaction can be determined by measuring
 - Absorption of visible light by the NO₂ that forms
 - NO₂ is reddish-brown
 - N₂O₅ is colorless
 - The change in pressure that results from the increase in the number of moles of gas
 - 1 mol reactant → 2.5 mol product

Instantaneous Rate

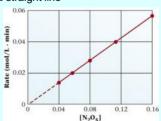
The instantaneous rate of a reaction is determined by calculating the slope of the line tangent to the concentration-time curve at the desired time

Reaction Rate and Concentration

- · Rate is directly related to reactant concentration
- Consider H₂O₂
 - $H_2O_2(I) \rightarrow H_2O(g) + \frac{1}{2}O_2(g)$
 - When pure, decomposition is fast and explosive
 - When dilute, such as drugstore peroxide, the reaction is much slower and the solution is stable for months

Oxygen Concentration and Rate of Combustion Steel wool in the fume reacts with atmospheric oxygen. In a stream of pure oxygen, the steel wool reacts much faster.

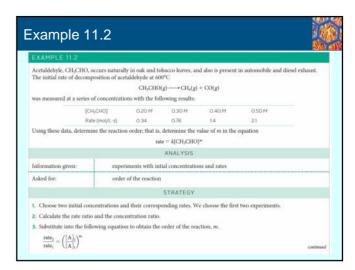
Rate and Collision



- Reactions occur when two particles of reactant collide with each other
 - The larger the concentration of reactant, the more likely molecules will collide
 - · Rate depends on concentration

Rate Expression and Rate Constant (Fig. 11.3)

• Plotting the rate vs. the concentration for the decomposition of N_2O_5 gives a straight line

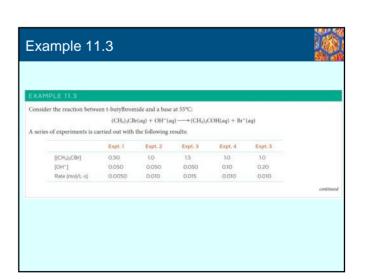


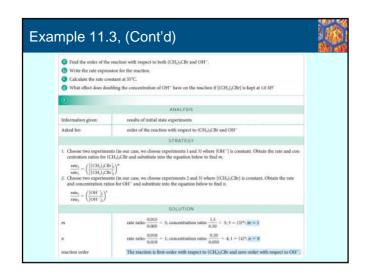
- · The equation for the reaction is
 - Rate = $k[N_2O_5]$
 - k is the rate constant for the reaction

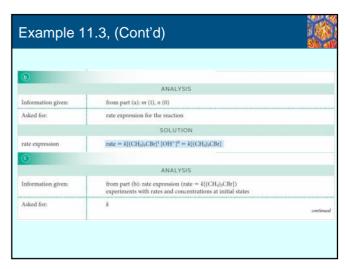
Order and Determination of Order of Reaction

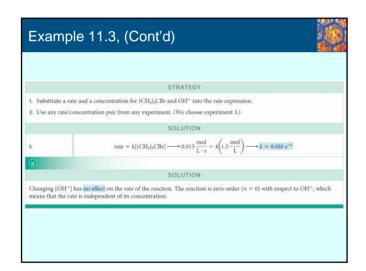
- Experiment must be done to determine the dependence of the rate of a reaction on the concentration of reactant
- · In general, for
 - A → products
 - Rate = k[A]m
 - · m is the order of the reaction
 - m must be determined experimentally

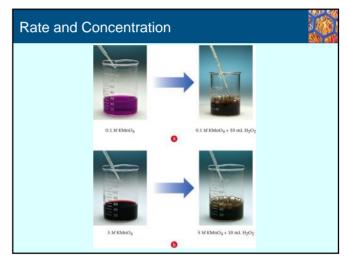
Calculating k




- Once the order of the reaction is known, the rate constant is easy to calculate
 - Use the rate and concentration data to solve for the rate constant
 - Units
 - Rate is always in mol/L-time
 - If the reaction is first order, the rate constant will have units of 1/time
 - The units of the rate constant tell the order of the reaction if they are given


Order of Reaction with Multiple Reactants




- aA + bB → products
- Rate = $k[A]^m[B]^n$
- · There are three orders:
 - The order with respect to A
 - The order with respect to B
 - The overall order (m+n)
- The orders can be determined the same way they are for single reactants

Reaction Concentration and Time

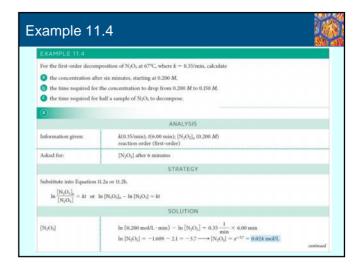
- The rate expression can be integrated (using calculus) to produce a concentration-time relationship
 - The relationship depends on the order of the reaction
 - · A new term, the half-life, will also result

First-Order Reactions

• For A → products, the relationship is

$$\ln\frac{[A]_0}{[A]} = kt$$

- · k is the rate constant
- t is time


Graphical Interpretation of the First-Order Relationship

• We can put the first-order relationship into the form

$$ln[A] = ln[A]_0 - kt$$

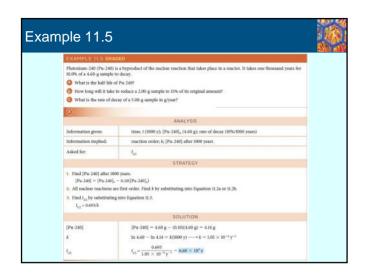
- Where, using y = mx + b,
 - In[A] is plotted on the y axis
 - t is plotted on the x axis
 - The slope of the line is -k
 - The y-intercept is In[A]₀

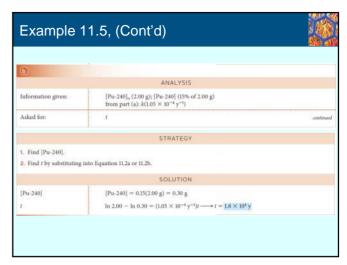
The Half Life

- The half life of a reaction is the time it takes for half the initial concentration of reactant to react
- For a first order reaction, at the half life, [A] = 1/2[A]₀ so

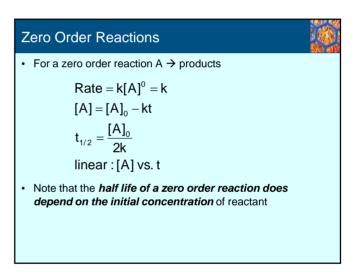
$$t_{1/2} = \frac{\ln 2}{k} = \frac{0.693}{k}$$

 Notice that for a first order reaction, the half life is independent of the starting concentration of reactant

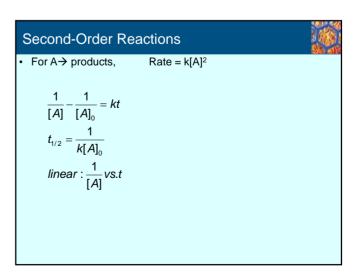

Applications of First Order Kinetics

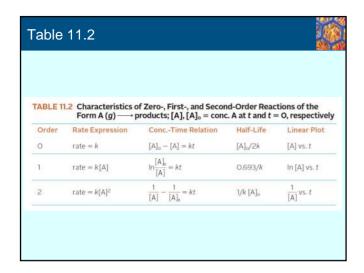


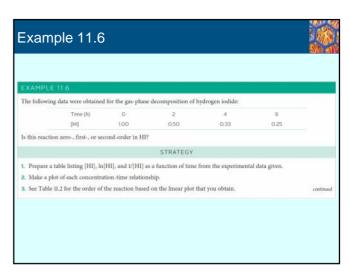
- · Radioactive decay is a first-order process
- If X₀ is the initial amount of radioactive element,

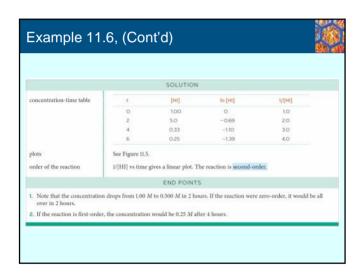

$$\ln \frac{X_0}{X} = kt$$

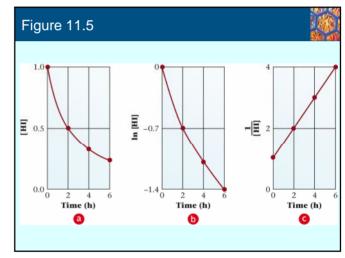
					Phil
ABLE 11.1 Decomposition of	N ₂ O ₅ at €	$67^{\circ}\text{C} (t_{1/2} =$	2.0 min)		
t(min)	0.0	2.0	4.0	6.0	8.0
[N ₂ O ₅]	0.160	0.080	0.040	0.020	0.010
Fraction of N ₂ O ₅ decomposed	0	† 2	3 4	7 B	15 16
Fraction of N₂O₅ left	1	1 2	1 4	1 8	16
Number of half-lives	0	1	2	3	4
Turning Turning					

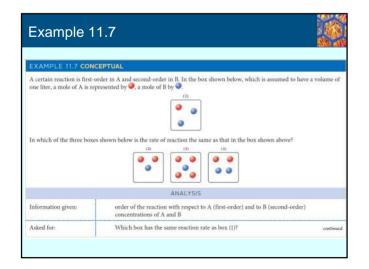


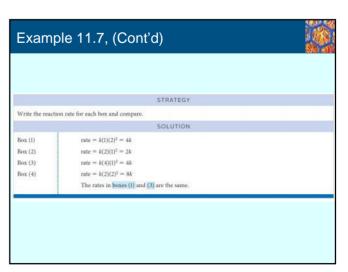



9				
	ANALYSIS			
Information given:	[Pu-240] _e (5.00 g); from part (a): $k(1.05 \times 10^{-4} \text{ y}^{-1})$			
Information implied:	reaction order $(m = 1)$			
Asked for:	rate of decay			
	STRATEGY			
Since the question is now to $rate = k[Pu-240]_{o}^{-1}$	relate concentration and rate, you must substitute into the general rate expression for Pu-240 decay.			
	SOLUTION			
Rate	rate = $(1.05 \times 10^{-4} \text{ y}^{-1})(5.00 \text{ g}) = 5.25 \times 10^{-4} \text{ g/y}$			
	END POINT			
Rate				




Decomposition of HI The decomposition of HI over a solid surface is one example of a zero order reaction Au HI (g) → ½ H₂ (g) + ½ I₂ (g)

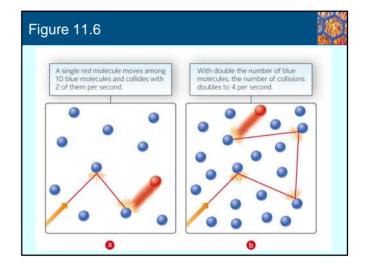




Modeling Reaction Rates

- · Two basic models of reaction rates
 - 1. Collision Model
 - 2. Transition State Model

Collision Model: Activation Energies



- CO (g) + NO₂ (g) \rightarrow CO₂ (g) + NO (g)
- Reaction takes place directly between CO and NO₂
 - Doubling [CO] doubles the rate
 - Doubling [NO₂] doubles the rate
- · Experimentally, the rate expression is
 - Rate = $k[CO][NO_2]$
- From kinetic theory, every CO molecule should collide with 10⁹ molecules of NO₂ in one second
 - · Reaction should be over in a fraction of a second
 - In reality the half life is about 10 sec, so not every collision leads to a reaction

Collisions, Effective and Ineffective

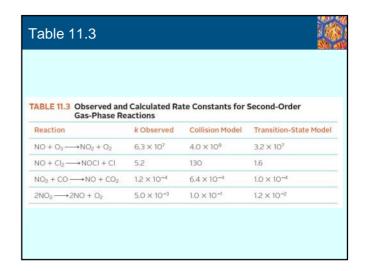
- · Why does every collision not lead to a reaction?
 - · Molecules have to be oriented properly (sterics)
 - Kinetic energy of collision may not be high enough to overcome repulsions of electrons in molecules
 - For every reaction, there is a minimum energy which the molecules must possess to react
 - This energy is the activation energy

Figure 11.7 Ineffective collision Effective collision © No Collision

Quantitative Aspects of Collision Theory

- k = pZf
 - p is the steric factor, accounting for the fact that only certain orientations of molecules will lead to effective collision
 - Z is the collision frequency, the number of collisions per unit time at unit concentrations of reactants
 - f is the fraction of collision in which the energy of collision is equal to or greater than the activation energy

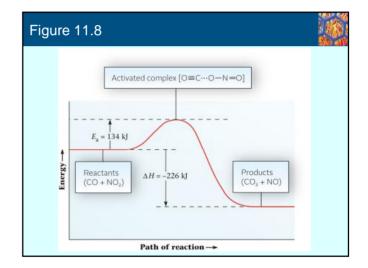
Collision Frequency Relationship



$$f = e^{\frac{-E_a}{RT}}$$

- · Ea is the activation energy
- · R is the gas constant in J/mol-K
- · T is the Kelvin temperature

$$k = pZe^{\frac{-E_a}{RT}}$$


• This combined equation tells us that the larger the activation energy, the smaller the rate constant

Transition-State Model

- Consider the activation energy diagram for the CO-NO₂ reaction
 - In it, energy is plotted on the y-axis
 - · Reaction path is plotted on the x-axis
- The reactants form an intermediate called an activated complex
 - The state of the system at the activated complex is called a *transition state*

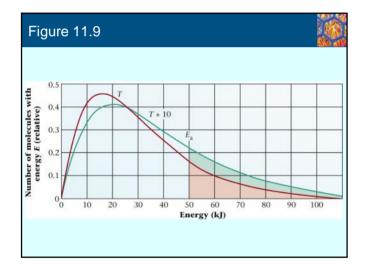
Understanding Activation Energy Diagrams

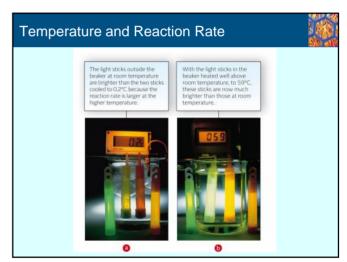
- Note the similarity of the diagram to the energy diagrams introduced in Chapter 8
 - An additional feature is the high-energy activated complex that forms upon collision
 - The activated complex is at low concentration, in equilibrium with reactant and product
 - The activated complex may proceed to form product, or fall back to reactant(s)
 - The activation energy is the difference in energy between reactant and activated complex
 - H is the difference in energy between reactant and product, just as it was in Chapter 8

Transition States and Activated Complexes

- In this model, the rate of reaction is controlled by the rate at which the activated complex forms
- The transition state model is somewhat more accurate than the collision model, at least when p=1
- Transition state model explains why the activation energy is ordinarily much smaller than the bond enthalpies in the reactant molecules

Reaction Rate and Temperature




- · Reaction rate ordinarily increases with temperature
 - To cook food more quickly, raise the oven temperature
 - To slow the reactions that lead to food spoilage, lower the temperature in the refrigerator or freezer
- $\bullet\,$ Every 10 $^\circ\,$ C increase in temperature doubles the reaction rate
 - This rule is general and approximate!

Kinetic Theory Revisited

- Recall from kinetic theory of gases that the temperature is a measure of the average kinetic energy of molecules
 - · Higher temperatures mean higher kinetic energies
 - The higher the temperature, the larger the fraction of molecules that possess the activation energy (or greater)
 - With a larger fraction of molecules possessing E_a, a larger fraction of effective collisions results

Arrhenius Theory

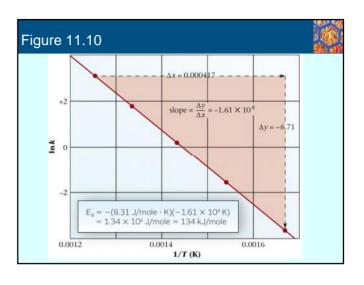
· Recall from the collision model

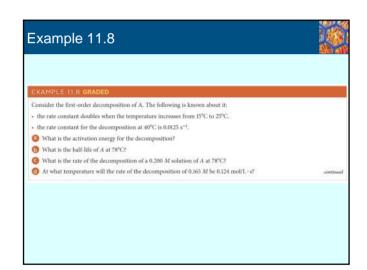
$$k = pZe^{\frac{-E_a}{RT}}$$

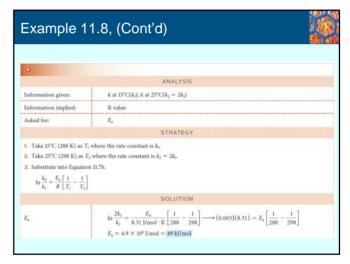
 Combining p and z into a single term called the Arrhenius pre-exponential, A, results in

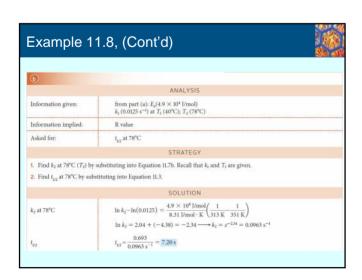
$$k = Ae^{\frac{-E_a}{RT}}$$

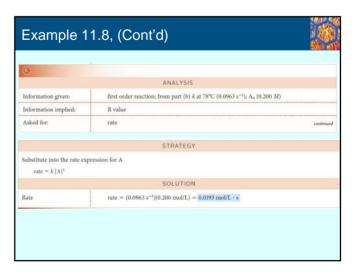
Graphical Interpretation of the Arrhenius Equation

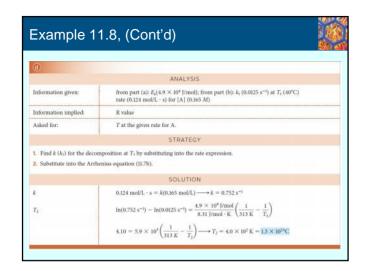


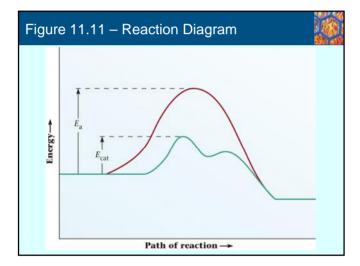

• The Arrhenius equation can be put into y=mx+b form


$$\ln k = \ln A - \frac{E_a}{RT}$$

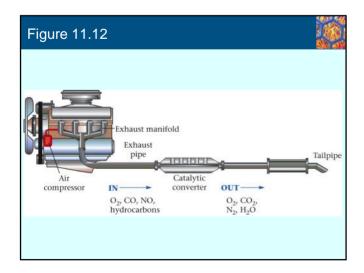

- A plot of ln(k) on the y-axis vs. 1/T on the x-axis yields
 - A slope equal to $-E_a/R$
 - A y-intercept equal to In(A)
- By obtaining experimental data that allows the calculation of k at various temperatures, the activation energy can be determined


Recall the Two-Point Vapor Pressure Equation • Clausius-Clapeyron • Taking two temperatures and two vapor pressures, the H_{vap} can be determined • The **Arrhenius equation** is similar in nature and can be used for two k values and two temperatures • E_a may then be calculated





Catalysis


- A catalyst is a substance that increases the rate of a reaction without being consumed by it
 - Catalysts act by introducing a lower-energy path by which the reaction can take place
 - An activated complex forms at lower energy than without the presence of the catalyst

Heterogeneous Catalysis

- A heterogeneous catalyst is in a phase different from that of the reaction mixture
 - Commonly a solid that is used for a gas or liquid phase reaction
 - Decomposition of N₂O on a gold surface
- Common heterogeneous catalyst: the catalytic converter, which contains a metal such as Pt
 - Catalyzes the oxidation of CO to CO₂
 - Catalyzes the oxidation of unburned hydrocarbons to CO₂ and water

The Catalytic Converter

- The other component of a catalytic converter is a metal such as rhodium
 - Rh catalyzes the *reduction* of NO to nitrogen and oxygen
- · The "magic" of the catalytic converter
 - By combining different metals, it is possible to carry out oxidation and reduction simultaneously, on different molecules, within the same catalytic converter

Homogeneous Catalysis

- Homogeneous catalysts are present in the same phase as the reactants
 - Example: decomposition of H₂O₂
 H₂O₂ (aq) → 2H₂O (l) + O₂ (g)
 - · Reaction is slow without a catalyst
 - · Reaction becomes rapid if NaI (aq) is added

Enzymes

- · Enzymes are biocatalysts
 - The same decomposition of hydrogen peroxide can be catalyzed by the enzyme called catalase
 - · Enzymes can be very specific
 - One enzyme can be targeted to perform a very specific reaction
 - Maltose can be converted to glucose by maltase
 - Enzymes can speed up biological reactions by a factor of 10¹² or greater

Figure 11.13

- A reaction mechanism is a description of a path, usually a series of steps, by which a reaction takes place
- · Earlier, we saw the reaction
 - CO (g) + NO₂ (g) \rightarrow CO₂ (g) + NO (g)
 - Takes place directly at high temperatures
 - · Occurs as a series of steps at lower temperatures

The CO-NO₂ Reaction at Low Temperature

- · At low temperature
 - $NO_2(g) + NO_2(g) \rightarrow NO_3(g) + NO(g)$
 - CO (g) + NO₃ (g) \rightarrow CO₂ (g) + NO₂ (g)
- · Overall, the sum of the steps is the same:
 - CO (g) + NO₂ (g) \rightarrow CO₂ (g) + NO (g)
- The nature of the rate expression and hence the reaction order depends on the mechanism by which the reaction takes place

Elementary Steps

- The individual steps in a mechanism are called elementary steps
 - Almost always unimolecular, bimolecular or termolecular:

• A → B + C

rate = k[A]

• A + B → C + D

rate = k[A][B]

• $A + B + C \rightarrow D + E$

rate = k[A][B][C]

Notes on Rate Expressions for Elementary Reactions

- Note that an elementary step implies that a reaction takes place exactly as written
 - This is different from an overall reaction, where the actual mechanism is unknown
- Therefore, the rate expression can be written directly from the elementary step equation
 - · This is only true for elementary steps
 - For overall reactions, experiments must still be done to determine the rate expression

Slow Steps

- In a mechanism, one step is often slower than the other (or others if more than two steps)
 - The slow step is rate-determining
 - The rate of the slow step is the rate of the reaction

A Real-World Example

- · Consider three people grading an examination
 - A spends 10 s grading question 1
 - B spends 15 s grading question 2
 - C takes 5 min to grade question 3
- · The rate at which the exam is graded is

$$\frac{1 exam}{10s + 15s + 300s} = 0.00308 \frac{exam}{s}$$

· The rate at which grader C graded is

$$\frac{1 \text{ exam}}{300 \text{ s}} = 0.00333 \frac{\text{exam}}{\text{s}}$$

· These numbers are approximately equal

Another Real-World Example

 On a two-lane highway, the slowest driver is the limiting factor in determining how fast cars following can proceed

Slow Steps

- · Conclusions
 - 1. The overall rate of a reaction cannot exceed the rate of the slowest step
 - 2. If that step is by far the slowest, its rate will be approximately equal to that of the overall reaction
 - 3. The slowest step in a reaction will ordinarily be the one with the highest activation energy

Deducing a Rate Expression from a Proposed Mechanism

- 1. Find the slowest step and equate the rate of the overall reaction to the rate of that step
- 2. Find the rate expression for that slowest step

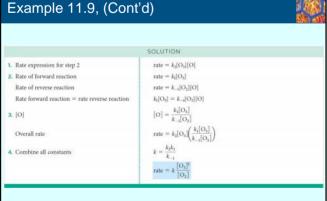
Figure 11.14 • In figure 11.14, clearly step 2 has the largest activation energy, so it is the slowest step Step 2 Step 3 Reactants Products Path of reaction ->

Deducing the Slower Step

- $NO_2(g) + NO_2(g) \rightarrow NO_3(g) + NO(g)$ (slow)
- CO (g) + NO₃ (g) \rightarrow CO₂ (g) + NO₂ (g) (fast)
- · Overall, the sum of the steps is the same:
 - CO (g) + NO₂ (g) \rightarrow CO₂ (g) + NO (g)
 - Rate = $k[NO_2]^2$
 - Note that this rate expression is different from the one we saw at high temperature; in other words, the rate expression depends on the mechanism

Reactive Intermediates

- · Mechanisms often involve reactive intermediates
 - · These are produced in one step and consumed in a subsequent step
 - · These do not appear in overall reactions
 - · Concentrations are too small to observe experimentally
 - The terms for such species are eliminated in the process of determining the rate expression


Example 11.9

STRATEGY

- 1. The rate-limiting step is the slow step (step 2). Write its rate expression 2. Write the rate expressions for the forward and reverse reactions of step 1. Since step 1 is in equilibrium,
- 3. Express the rates of step 1 in terms of [O] and substitute into the rate expression for step 2.
- 4. Combine all constants into a single constant k.

Limitations on Mechanism Studies

- · More than one mechanism is usually compatible with the data obtained from experiment
- · It can be difficult to ascertain which mechanism is the true mechanism for a reaction

Key Concepts

- 1. Determine the reaction order from
 - · Initial rate data
 - · Concentration-time data
 - · The reaction mechanism
- 2. Relate concentration and time for various orders of reaction
- 3. Use the Arrhenius equation to relate the rate constant to temperature