

Chemical Equilibria

- For a gaseous chemical equilibrium, more than one gas is present:
 - aA (g) + bB (g) ⇒ cC (g) + dD (g)
 - To describe the state of this system, the partial pressures of all gases must be known
 - · Using the Ideal Gas Law:

$$P_i = \frac{n_i RT}{V}$$

 in a closed system, with fixed volume and temperature, the partial pressure of each species is proportional to the number of moles of that species

Outline

- 1. N₂O₄-NO₂ equilibrium system
- 2. The equilibrium constant expression
- 3. Determination of K
- 4. Applications of the equilibrium constant
- 5. Effect of changes in conditions on an equilibrium system

Working with Chemical Equilibria

- 1. Writing the expression for the equilibrium constant
- 2. Calculating the equilibrium constant from experimental data
- 3. Using the equilibrium constant to predict the extent to which a reaction will take place
- 4. Using the equilibrium constant to predict the effect that disturbing a system in equilibrium will have

Review of Liquid-Vapor Equilibrium

- In Chapter 9 we examined the equilibrium that is established between a liquid and a vapor, such as that for water
 - $H_2O(I) \rightleftharpoons H_2O(g)$
 - The state of the system can be described by stating the vapor pressure of water at the given temperature
 - The process is reversible
 - The forward and reverse processes take place at the same rate

The N₂O₄-NO₂ Equilibrium

- N₂O₄ is colorless
- NO₂ is brown
- When N₂O₄ is sealed into a closed, evacuated container at 100 ° C, a reddish-brown color develops due to the decomposition to NO₂
 - $N_2O_4(g) \rightleftharpoons 2NO_2(g)$
- As NO₂ builds up, it can react to form N₂O₄
 The reverse reaction takes place
- An equilibrium is established where the rate of decomposition of N₂O₄ equals that of reaction of NO₂

Establishment of Equilibrium

- The rate of decomposition of N_2O_4 starts out fast but slows down as the pressure of N_2O_4 of drops
- The rate of reaction of NO₂ starts out slow but speeds up as the pressure of NO₂ builds up
- Once the rates of reaction are equal, equilibrium is established
 - No further pressure change of either gas unless the temperature or the volume of the container is changed
 - The concentrations (pressures) of the gases are independent of the direction from which equilibrium is approached

BLE 12.	2 Equilibriur	n Measurements in the N ₂ O ₄	
		Original Pressure (atm)	Equilibrium Pressure (atm)
Expt. 1	N2O4	1.00	0.22
	NO2	0.00	1.56
Expt. 2	N2O4	0.00	0.07
	NO ₂	1.00	0.86
xpt. 3	N2O4	1.00	0.42
	NO2	1.00	2.16

ABLE 12.1 Est	ablishment	of Equilibri	um in the §	System N ₂ O	(a) === 2	NO₂(a)
(at	100°C)	2				
Time	0	20	40	60	80	100
	1000	0.60	0.35	0.22*	0.22	0.22
P _{N2O4} (atm)	1.00					
P _{N2O4} (atm) P _{NO2} (atm)	0.00	0.80	1.30	1.56	1.56	1.56

Common Ground
 What do the three experiments in Table 12.2 have in common? The original pressures differ A specific ratio of product to reactant is common to all three experiments The reaction quotient We can define a ratio of product to reactant:
$\frac{(P_{_{NO_2}})^2}{P_{_{N_2O_4}}}$
 For all three experiments, the value of this quotient is 11

The Equilibrium Constant

- When we use the values for the pressure of each gas at equilibrium with the quotient we just defined, we arrive at the equilibrium constant
- The value of the equilibrium constant is independent of the starting concentration or pressure of the reactants and products
- The value of the equilibrium constant is *dependent* on the temperature

Changing the Chemical Reaction

- K depends on the equation written to describe the chemical reaction underlying the equilibrium
- · Changing the reaction changes K
- . The coefficient rule:

• For n = 2

• If the reaction is multiplied by a number, n, then K is raised $K = \frac{(P_{NO_2})^4}{(P_{N_2O_4})^2}$ to that power:

• $2N_2O_4(g) \rightleftharpoons 4NO_2(g)$

• For n =
$$\frac{1}{2}$$
 (i.e., divide the reaction by two):
• $\frac{1}{2}N_2O_4(g) \rightleftharpoons NO_2(g)$

$$f = \frac{(P_{NO_2})}{(P_{NO_2})^{\frac{1}{2}}}$$

Equilibrium Constant Expression

- · For a reaction where
 - aA (g) + bB (g) ⇒ cC (g) + dD (g)

• A, B, C, D all gases

- · a, b, c, d are the coefficients of the balanced equation
- K is the equilibrium constant

$$K = \frac{(P_C)^c (P_D)}{(P_A)^a (P_B)}$$

- · All partial pressures must be expressed in atmospheres
- · Product terms are in the numerator
- · Reactant terms are in the denominator
- · Coefficients of reactants and product are used as powers
- This K can be termed K_p (pressure equilibrium constant)

Changing the Chemical Reaction, (Cont'd)

- For the forward and reverse reactions, the K expressions are the reciprocals of each other (the reciprocal rule)
 - For $2NO_2(g) \rightleftharpoons N_2O_4(g)$,

$$K = \frac{(P_{N_2O_4})}{(P_{NO_2})^2}$$

Equilibrium Constant and Concentration

• For the same aA (aq) + bB (aq) \Rightarrow cC (aq) + dD (aq) • K_c is the concentration equilibrium constant

$$K_{C} = \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$$

- If Δn_a is the change in the number of moles of gas from left to right (i.e., n_a (product) – n_a (reactant)), then
- K_n is the pressure equilibrium constant

$$K_p = K_c (RT)^{\Delta n}$$

Adding Chemical Equations

- · The rule of multiple equilibria
- If a reaction can be expressed as the sum of two or more reactions, the K for the overall reaction is the product of the K values for the individual reactions
- Consider

•
$$SO_2(g) + \frac{1}{2}O_2(g) \rightleftharpoons SO_3(g)$$
 K = 2.2

• NO₂ (g)
$$\rightleftharpoons$$
 NO (g) + $\frac{1}{2}O_2$ (g) K = 4.0

• For

• $SO_2(g) + NO_2(g) \rightleftharpoons SO_3(g) + NO(g)$ K = 8.8

TABLE 12.3 Dependence of K on the Form of the Chemical Reaction $R(g) \implies Y(g)$ $K = \frac{P_Y}{P_R}$				
Form of Equation	K Expression	Relation to K	Rule	
$Y(g) \Longrightarrow R(g)$	$K' = \frac{P_R}{P_{\gamma}}$	$K' = \frac{1}{K}$	Reciprocal Rule	
$nR(g) \rightleftharpoons nY(g)$	$K'' = \frac{(P_Y)^n}{(P_R)^n}$	K'' = K''	Coefficient Rule	
$R(g) \Longrightarrow \underline{A(g)}$	$K_1 = \frac{P_A}{P_R}$			
$A(g) \Longrightarrow Y(g)$	$K_2 = \frac{P_Y}{P_A}$			
$R(q) \rightleftharpoons Y(q)$		$K = K_1 \times K_2$	Rule of Multiple Equilibria	

0		200
	STRATEGY	
	O, which is a product in Equation (1) but a re	actant in the desired equation. Reverse
Equation (1) and apply the		
	D ₂ , which is the product in Equation (2) and	n the desired equation. Change is unnecessary.
 Add the two equations. 		
 Apply the rule of multiple 	equilibria.	
	SOLUTION	
1. Reverse Equation (1).	$2NO(g) \implies N_2(g) + O_2(g)$	<i>K</i> *
Apply reciprocal rule.	$K' = \frac{1}{K_1} = \frac{1}{4.2 \times 10^{-31}}$	
2. Keep Equation (2).	$N_2(g) + 2 O_2(g) \Longrightarrow 2NO_2(g)$	$K_2 = 1.0 \times 10^{-18}$
3. Overall equation	$2NO(g) \implies N_2(g) + O_2(g)$	$K^* = \frac{1}{4.2 \times 10^{-31}}$
	$N_2(g) + 2 O_2(g) \Longrightarrow 2NO_2(g)$	$K_2 = 1.0 \times 10^{-18}$
	$2NO(g) + O_2(g) \implies 2NO_2(g)$	

Heterogeneous Equilibria In mixed-phase systems, note that the liquids and solids present do not change with time Pure solids and pure liquids *do not appear in equilibrium expressions*The position of equilibrium is independent of the amount of solid or liquid, *as long as some is present in the reaction mixture*

C	
	STRATEGY
1. Write the reaction for the	decomposition of NO2 and note that you are asked for the decomposition of one mole.
 To arrive at the equation f coefficients by ¹/₂ (coefficients) Apply both rules. 	or the decomposition of one mole of NO_5 you switch sides (reciprocal rule) and multiply the at rule).
	SOLUTION
Equation for the reaction	$\begin{array}{c} N_{2}(g) + 2 \ O_{2}(g) & \longrightarrow \\ NO_{2}(g) & \longrightarrow \\ \end{array} \begin{array}{c} 2NO_{3}(g) & \longrightarrow \\ NO_{2}(g) & \longrightarrow \\ \end{array} \begin{array}{c} N_{2}(g) + 2 \ O_{2}(g) & \longrightarrow \\ \end{array} \end{array}$
Reciprocal rule	$K' = 1/K_2$
Coefficient rule	$K = (K')^{1/2} = (1/K_2)^{1/2}$
ĸ	$\left(\frac{1}{1.0 \times 10^{-18}}\right)^{1/2} = 1.0 \times 10^{9}$

able 12.4				
	ilibrium Constant (g) + H₂(g) ⇒ 0		r the Reaction	
	Expt.1	Expt. 2	Expt. 3	Expt. 4
1ass H₂O(/)	8 g	6 g	4 g	2 g
P _{H2O} (atm)	3 × 10-2	3 × 10 ⁻²	3 × 10 ⁻²	3 × 10 ⁻²
í.	9 × 10 ⁻⁶	9 × 10 ⁻⁶	9 × 10 ⁻⁶	9 × 10 ⁻⁶
ín.	3 × 10 ⁻⁴	3 × 10 ⁻⁴	3 × 10 ⁻⁴	3 × 10 ⁻⁴
	$K_{\rm I} = \frac{P_{\rm CO}}{P_{\rm CO_2}}$	$\frac{\times P_{H_2O}}{\times P_{H_2}} \qquad K_{II} = \frac{1}{P_C}$	$\frac{P_{CO}}{O_2 \times P_{H_2}}$	
	$\kappa_1 = \frac{1}{P_{CO_2}}$	$\times P_{H_2}$ $\kappa_{\parallel} = \frac{1}{P_C}$	$_{O_2} \times P_{H_2}$	

Recap

- · In the equilibrium expression, always include
 - Partial pressures for gases, raised to the coefficient of each
 - Molar concentrations for aqueous species (molecules or ions), raised to the coefficient of each
- · Always exclude
 - · Terms for pure liquids and pure solids
 - Zn (s) + 2H⁺ (aq) \leftrightarrows Zn²⁺ (aq) + H₂ (g)

•
$$K = \frac{[Zn^{2+}]p_{H_2}}{[H^+]^2}$$

Example 12.4				
EXAMPLE 12.4				
Consider the equilibrium sy	$2HI(g) \longrightarrow H_2(g) + I_2(g)$			
Originally, a system contair be 0.10 atm. Calculate	ns only HI at a pressure of 1.00 atm at 520° C. The equilibrium partial provide the transmission of transmission of the transmission of the transmission of the transmission of trans	essure of H ₂ is found to		
Pla and PHI at equilibriu	um 🕕 K			
()				
-	ANALYSIS			
Information given:	initial pressure (P_a) for HI (1.00 atm) equilibrium pressure (P_{eq}) for H ₂ (0.10 atm)			
Information implied:	initial pressures (P ₀) for H ₂ and I ₂			
Asked for:	equilibrium partial pressures (P_{eq}) for I ₂ and HI	continue		

	SOLUTION	
ĸ	$K = \frac{(P_{\rm H_2})(P_{\rm H_2})}{(P_{\rm H_2})^2} = \frac{(0.10)(0.10)}{(0.80)^2} = 0.016$	
	END POINT	
You should exp pressure of HI	sect K to be rather small (0.016). Recall that at equilibrium, $P_{\rm H_2}$ is 0.10 atm, only on (1.00 atm).	e tenth of the original

Fundamentals of Equilibrium Problems As a system approaches equilibrium, changes in partial pressures of reactants and products are related to each other through the coefficients of the balanced equation The same holds for changes to molar amounts The balanced equation is the key to setting up and solving equilibrium problems

	2.4, (Cont'd)	
ь		
	ANALYSIS	
Information given:	from part (a): equilibrium pressures for H1 (0.80 atm) and for I ₂ (0.10 atm) equilibrium pressure $(P_{\rm eq})$ for H ₂ (0.10 atm)	
Information implied:	K expression	
Asked for:	equilibrium constant K at 520°C	
	STRATEGY	
1. Write the equilibrium ex	xpression.	
2. Substitute into the expre	ession for K.	continued

Арр	plications of the Equilibrium Constant
	ne magnitude of the equilibrium constant translates rectly into the extent of reaction
•	Reactions are feasible as written only if K is large enough that an appreciable amount of product forms
•	Consider the reaction
	 N₂ (g) + O₂ (g) ≈ 2NO (g) K = 1 X 10⁻³⁰ at 25 ° C
	 This reaction does not proceed to any great extent at this temperature, so nitrogen and oxygen in air do not react appreciably at room temperature

Synthesis of Ammonia

• $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$

• K = 6 X 10⁵ at 25 $^{\circ}$ C

- When the reaction reaches equilibrium, mostly product (ammonia) is present
- Conclusions
 - If K is very small, the mixture contains mostly unreacted reactants at equilibrium
 - If K is large, the mixture contains mostly products at equilibrium

Table 12.5 TABLE 12.5 Approach to Equilibrium in the System A \implies B for which K = 1.00Experiment 1* Experiment 2* 0 20 40 60 0 20 40 60 t 1.50 [B] 1.00 1.35 1.50 2.00 1.65 1.50 1.50 2.00 150 [A] 165 1.50 1.50 1.00 1.35 1.50 0.500 0.818 1.00 1.00 2.00 1.22 1.00 1.00 $\mathsf{Q} = [\mathsf{B}]/[\mathsf{A}]$ Q<K Q = KQ>K Q = K*In both experiments, systems to the right of the broken line have reached equilibrium

Direction of Reaction; the Reaction Quotient, Q

- · We can define a new quantity called the reaction quotient, Q
- · Q has the same form as the equilibrium expression
 - Values for reactant and product need not be equilibrium pressures
- For aA (g) + bB (g) \rightleftharpoons cC (g) + dD (g)

$$Q = \frac{(P_{C})^{c}(P_{D})^{d}}{(P_{A})^{a}(P_{B})^{b}}$$

Q and the Direction of Reaction, (Cont'd)

- · Comparing Q and K
 - When Q < K, the reaction proceeds from left to right
 - When Q > K, the reaction proceeds from right to left
 - When Q = K, the reaction is at equilibrium

Q and the Direction of Reaction When we start with only reactants aA (g) + bB (g) ≓ cC (g) + dD (g)

- P_C and P_D are 0, so Q = 0
 When we start with only products
 - P_A and P_B are 0, so $Q \rightarrow \infty$
- Q can take any value from zero to infinity

Example 12	
EXAMPLE 12.5	
Consider the following syst	tem at 100°C:
	$N_2O_4(g) = 2NO_2(g)$ $K = 11$
Predict the direction in whi in a 2.0-L container.	ich reaction will occur to reach equilibrium, starting with 0.10 mol of $\rm N_2O_4$ and 0.20 mol of NO
	ANALYSIS
Information given:	reaction and K at 100 ⁶ C (11) initial amounts of N_2O_4 (0.10 mol) and NO_2 (0.20 mol) volume of the container (2.0 L)
Information implied:	R value
Asked for:	direction of the reaction
	STRATEGY
1. Calculate the partial pre	ssures of all species using the ideal gas law and stoichiometric ratios.
2. Write the expression for	Q and find its value.
	redict the direction of the reaction.

	SOLUTION
$\begin{array}{c} \mathbf{L} P_{\mathbf{N},\mathbf{O}_{1}} \\ P_{\mathbf{N}\mathbf{O}_{2}} \end{array}$	$P = \frac{nRT}{V} = \frac{(0.10)(0.0821)(373)}{2.0} = 1.5 \text{ atm}$ Since V and T are constant, <i>n</i> is proportional to <i>P</i> , and <i>P</i> can be obtained using the stoichiometric ratio of NOs and NO ₂ .
2. Q	1.5 atm for N ₂ O ₄ × $\frac{2 \mod NO_5}{1 \mod NO_5}$ = 3.0 atm $Q = \frac{(P_{so_2})^2}{(P_{so_2})^2} = \frac{(3.0)^2}{1.5} = 6.0$
3. Direction	P_{N,O_1} 1.5 Q(6.0) < K(11) The reaction proceeds from left to right ().
	END POINT
17	

	2.6, (0			•)					
 Choose ΔP for CO a 	s x. Since all th	e coefficie	nts of	f the react	ion are 1	all the sp	ecies	have x fo	τ Δ <i>Ρ.</i>
		CO2(9)	+	$H_2(g)$	-	CO(g)	+	H ₂ O(g)	
	Pa (atm)	1.00		100		0		0	
	$\Delta P (atm)$ $P_{int} (atm)$	×		×		×		×	
3. Direction of the reac	tion (-+)								
		CO2(g)	+	$H_2(g)$		CO(g)	+	H2O(g)	
	Pa (atm)	1.00		1.00		0		0	
	ΔP (atm)	-*		-x		+x		+x	
	Peq (atm)								
4. Equilibrium partial p	ressures								
		CO2(9)	+	H ₂ (g)	-	CO(g)	+	$H_2O(g)$	
	P_a (atm)	1.00		1.00		0		0	
	ΔP (atm)			-x		+/K		$+\kappa$	
	P _{es} (atm)	1.00 - x		1.00 - x		х		×	
5. K expression	K =	$\frac{(P_{\rm co})(P_{\rm H})}{(P_{\rm co})(P_{\rm H})}$	(0) (R)	(1.00 -	(x)(x) x)(1.00	$\frac{1}{-x} = ($	0.64		
Solve for x		e the squar							

Equilibrium Partial Pressures

- The equilibrium constant can be used to calculate the partial pressures of the species present at equilibrium
 - 1. Using the balanced equation, write the K expression
 - 2. Express the equilibrium partial pressures in terms of a single unknown.

Use the balanced equation to make the expression

- 3. Substitute into the expression for K to find the unknown in (2)
- 4. Calculate the equilibrium partial pressures using (3)

Changes to Equilibrium Systems

· Several changes can disturb a system in equilibrium

- 1. Adding or removing a gaseous reactant or product
- 2. Compressing or expanding the system
- 3. Changing the temperature

$N_2O_4(g) \rightleftharpoons 2NO_2(g)$

- Adding N₂O₄ will cause a shift from left to right
- Adding NO2 will cause a shift from right to left
- *Removing* N₂O₄ will cause a shift from *right to left*
- *Removing NO*₂ will cause a shift from *left to right*
- It is possible to use K to calculate the extent to which the shift occurs when a reactant or product is added or removed

LeChâtelier's Principle

- Henri LeChâtelier (1850-1936)
- If a system at equilibrium is disturbed by a change in concentration, pressure, or temperature, the system will, if possible, shift to partially counteract the change and restore equilibrium

Example 1	2.7
EXAMPLE 12.7	
	that the HI–H ₂ –I ₂ system is in equilibrium at 520°C when $P_{\rm HI}=0.80$ atm and $P_{\rm H_2}=P_{\rm H}=$ HI is added to raise its pressure temporarily to 1.00 atm. When equilibrium is restored, what are
	ANALYSIS
Information given:	equilibrium pressures for HI (0.80 atm), I_2 (0.10 atm), and H_2 (0.10 atm) from Example 12.4 K (0.016) equilibrium disturbed by adding HI (now 1.00 atm)
Information implied:	direction of the reaction
Asked for:	equilibrium pressures when equilibrium is reestablished
	STRATEGY
 Create a table. Note that <i>P_u</i> for HI is now 1.00 atm 	the equilibrium partial pressures now become initial pressures for HI and I_2 .
2. Since HI is added, the re	eaction goes in the direction of using up the HI, thus to the right.
3. Write the K expression a	and solve for x.
4. Substitute the value for a	x into the equilibrium pressures for all species.

Adding or Removing a Gas

- If a chemical equilibrium is disturbed by *adding* a gas (reactant or product), the system will *shift in the direction that consumes the added species*.
- If a chemical equilibrium is disturbed by *removing* a gas (reactant or product), the system will *shift in the direction that restores part of the added species*.

Example 12.7, (Cont'd)	
END POINT	
Note that the equilibrium partial pressure of HI is intermediate between its value befor	re equilibrium was established
(0.80 atm) and that immediately afterward (1.00 atm). This is exactly what LeChitelies	e's principle predicts part of the addee
	r's principle predicts: part of the addee
(0.80 atm) and that immediately afterward (1.00 atm). This is exactly what LeChâteliei HI is consumed to reestablish equilibrium!	r's principle predicts: part of the addee
	r's principle predicts: part of the addee
	r's principle predicts: part of the addee
	r's principle predicts: part of the addee
	f's principle predicts: part of the adde

LE 12.6 Effect of Compression on the Equilibrium System	
$N_2O_4(g) \longrightarrow 2NO_2(g); K = 11 \text{ at } 100^\circ C$	n _{tot}
1.0 0.92 0.08	.00
2,0 0.82 0.13	0.95
5.0 0.64 0.22	0.86
10.0 0.50 0.29	0.79

Volume Changes

- · Consider again the equilibrium
 - $N_2O_4(g) \rightleftharpoons 2NO_2(g)$
- · Reducing the volume will increase the pressure
 - Recall that P = nRT/V
 - Pressure and volume are inversely related
 - As V becomes smaller, P becomes larger
- · Now consider the system response
 - By shifting to the left, two moles of gas are consumed and one is produced
 - The pressure is reduced by shifting to the left, so the stress is counteracted

Pressure Changes

- When a system is compressed, the *total pressure increases*, causing the system to shift in the direction that decreases the total number of moles of gas
- When a system is expanded, the *total pressure decreases*, causing the system to shift in the direction that increases the total number of moles of gas
- If the total number of moles of gas is the same on both sides of the equation, pressure change will have a small or negligible effect on the equilibrium

			NM.
ABLE 12.7 Effect of Pressure on th	e Position	of Gaseous Equil	ibria
System	$\Delta n_{\rm gas}$ *	P _{tot} Increases	P _{tot} Decreases
I. $N_2O_4(g) \Longrightarrow 2NO_2(g)$	+1		\rightarrow
2. $SO_2(g) + \frac{1}{2}O_2(g) \Longrightarrow SO_3(g)$	$-\frac{1}{2}$	→	-
3. $N_2(g) + 3H_2(g) \Longrightarrow 2NH_3(g)$	-2	\rightarrow	
4. $C(s) + H_2O(g) \Longrightarrow CO(g) + H_2(g)$	+1		\rightarrow
5. $N_2(g) + O_2(g) \Longrightarrow 2NO(g)$	0	0	0
n _{ess} is the change in the number of moles of ga	s as the forwa	rd reaction occurs.	

Changes in Temperature

- In increase in temperature favors the endothermic reaction
 - $N_2O_4(g) \rightleftharpoons 2NO_2(g)$ $\Delta H^\circ = +57.2 \text{ kJ}$ • Increasing the temperature favors the formation of NO_2
 - $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g) \quad \Delta H^\circ = -92.2 \text{ kJ}$ • Increasing the temperature favors the formation of
 - N₂ and H₂ • The *reverse reaction is endothermic*

-	(g) + 3H ₂ (K = 6 X 10 ⁵	g) \rightleftharpoons 2NH ₃ ($\frac{1}{2}$ at 25 ° C	g) ∆H°	= -92.2 k	J
		at 100 °C			
	Convert te	emperatures to	\sim Kelvin and Δ	H° to J	
	• K at 100 °	$C = 4 \times 10^2$			
		K becomes sr ve enthalpy cl	naller as T inc nange	reases beca	use of
	 For reaction temperature 		ve ΔH° , K in	creases with	

Example 12.	8
EXAMPLE 12.8	
Consider the following sy	stems:
(a) 2CO(g) + O ₂ (g) ==	$= 2CO_2(g) \qquad \Delta H = -566 \text{ kJ}$
(b) $H_2(g) + I_2(g) \Longrightarrow 2$	$HI(g) \qquad \Delta H = -2.7 \text{ kJ}$
(c) $H_2(g) + I_2(s) = 2H$	$41(g)$ $\Delta H = +53.0 \text{ kJ}$
(d) $I_2(g) \rightleftharpoons 2I(g)$	$\Delta H = +36.2 \text{ kJ}$
What will happen to the p stant pressure?	position of the equilibrium if the system is compressed (at constant temperature)? Heated at con-
	STRATEGY
1. An increase in pressur	e tends to drive the equilbrium in a direction where there are fewer moles of gas.
2. An increase in temper	ature favors an endothermic reaction ($\Delta H > 0$), i.e., creates more products.
	SOLUTION
(a) Increase in P Increase in T	(3 mol of gas on the left; 2 mol of gas on the right)
(b) Increase in P Increase in T	(2 mol of gas on the left; 2 mol of gas on the right) no effect exothermic reaction +
(c) Increase in P Increase in T	(1 mol of gas on the left; 2 mol of gas on the right) ← endothermic reaction →
(d) Increase in P Increase in T	(1 mol of gas on the left; 2 mol of gas on the right)

Two-Point Equilibrium Constant Equation • van't Hoff Equation $ln(\frac{K_2}{K_1}) = \frac{\Delta H^2}{R} [\frac{1}{T_1} - \frac{1}{T_2}]$

- Same form as the Clausius-Clapeyron and Arrehius rateconstant equations
- + $\, K_2$ and K_1 are equilibrium constants corresponding to T_2 and T_2
- + $\Delta H^\circ~$ is the enthalpy change for the reaction

Final Notes

- We have examined three changes in conditions:
 - 1. Adding or removing a gas
 - 2. Compressing or expanding the system
 - 3. Changing the temperature
- The only way to change the equilibrium constant is to change the temperature at which the reaction takes place.

Key Concepts

- 1. Relate the expression for K to the corresponding equation for the chemical reaction
- 2. Calculate K knowing
 - appropriate K values for other reactions
 - all the equilibrium partial pressures
 - all the original and one equilibrium partial pressure
- 3. Use the value of ${\sf K}$ to determine
 - the direction of the reaction
 - equilibrium partial pressures of all species
- 4. Use LeChâtelier's principle to determine what will happen when the conditions on an equilibrium system are changed