
$\therefore \begin{gathered}\text { BROOKS } \\ \text { CNGAGE Leaning }\end{gathered}$
William L Masterton
Cecile N. Hurley
Edward J. Neth
cengage.com/chemistry/masterton

Chapter 12

Gaseous Chemical Equilibrium

Edward J. Neth • University of Connecticut

Outline

1. $\mathrm{N}_{2} \mathrm{O}_{4}-\mathrm{NO}_{2}$ equilibrium system
2. The equilibrium constant expression
3. Determination of K
4. Applications of the equilibrium constant
5. Effect of changes in conditions on an equilibrium system

Review of Liquid-Vapor Equilibrium

- In Chapter 9 we examined the equilibrium that is established between a liquid and a vapor, such as that for water
- $\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
- The state of the system can be described by stating the vapor pressure of water at the given temperature
- The process is reversible
- The forward and reverse processes take place at the same rate

Chemical Equilibria

- For a gaseous chemical equilibrium, more than one gas is present:
- $\mathrm{aA}(\mathrm{g})+\mathrm{bB}(\mathrm{g}) \rightleftharpoons \mathrm{cC}(\mathrm{g})+\mathrm{dD}(\mathrm{g})$
- To describe the state of this system, the partial pressures of all gases must be known
- Using the Ideal Gas Law:

$$
P_{i}=\frac{n_{i} R T}{V}
$$

- in a closed system, with fixed volume and temperature, the partial pressure of each species is proportional to the number of moles of that species

Working with Chemical Equilibria

1. Writing the expression for the equilibrium constant
2. Calculating the equilibrium constant from experimental data
3. Using the equilibrium constant to predict the extent to which a reaction will take place
4. Using the equilibrium constant to predict the effect that disturbing a system in equilibrium will have

The $\mathrm{N}_{2} \mathrm{O}_{4}-\mathrm{NO}_{2}$ Equilibrium

- $\mathrm{N}_{2} \mathrm{O}_{4}$ is colorless
- NO_{2} is brown
- When $\mathrm{N}_{2} \mathrm{O}_{4}$ is sealed into a closed, evacuated container at $100^{\circ} \mathrm{C}$, a reddish-brown color develops due to the decomposition to NO_{2}
- $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$
- As NO_{2} builds up, it can react to form $\mathrm{N}_{2} \mathrm{O}_{4}$
- The reverse reaction takes place
- An equilibrium is established where the rate of decomposition of $\mathrm{N}_{2} \mathrm{O}_{4}$ equals that of reaction of NO_{2}

Establishment of Equilibrium

- The rate of decomposition of $\mathrm{N}_{2} \mathrm{O}_{4}$ starts out fast but slows down as the pressure of $\mathrm{N}_{2} \mathrm{O}_{4}$ of drops
- The rate of reaction of NO_{2} starts out slow but speeds up as the pressure of NO_{2} builds up
- Once the rates of reaction are equal, equilibrium is established
- No further pressure change of either gas unless the temperature or the volume of the container is changed
- The concentrations (pressures) of the gases are independent of the direction from which equilibrium is approached

Figure 12.1

Figure 12.2 - Graphical Display of Equilibrium

Table 12.2

TABLE 12.2 Equilibrium Measurements in the $\mathrm{N}_{2} \mathrm{O}_{4}-\mathrm{NO}_{2}$ System at $100{ }^{\circ} \mathrm{C}$			
	Original Pressure (atm)	Equilibrium Pressure (atm)	
Expt. 1	$\mathrm{~N}_{2} \mathrm{O}_{4}$	1.00	$\mathbf{0 . 2 2}$
	NO_{2}	0.00	$\mathbf{1 . 5 6}$
Expt. 2	$\mathrm{~N}_{2} \mathrm{O}_{4}$	0.00	$\mathbf{0 . 0 7}$
	NO_{2}	1.00	$\mathbf{0 . 8 6}$
Expt. 3	$\mathrm{~N}_{2} \mathrm{O}_{4}$	1.00	$\mathbf{0 . 4 2}$
	NO_{2}	1.00	$\mathbf{2 . 1 6}$

Table 12.1 - Numeric Data on Equilibrium

TABLE 12.1 Establishment of Equilibrium in the System $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons \mathbf{2} \mathrm{NO}_{2}(g)$ (at $100^{\circ} \mathrm{C}$)						
Time	0	20	40	60	80	100
$\mathrm{P}_{\mathrm{N}_{2} \mathrm{O}_{4}}(\mathrm{~atm})$	1.00	0.60	0.35	0.22^{*}	0.22	0.22
$\mathrm{P}_{\mathrm{NO}_{2}}(\mathrm{~atm})$	0.00	0.80	1.30	1.56	1.56	1.56

[^0]
Common Ground

- What do the three experiments in Table 12.2 have in common?
- The original pressures differ
- A specific ratio of product to reactant is common to all three experiments
- The reaction quotient
- We can define a ratio of product to reactant:

$$
\frac{\left(\mathrm{P}_{\mathrm{NO}_{2}}\right)^{2}}{\mathrm{P}_{\mathrm{N}_{2} \mathrm{O}_{4}}}
$$

- For all three experiments, the value of this quotient is 11

The Equilibrium Constant

- When we use the values for the pressure of each gas at equilibrium with the quotient we just defined, we arrive at the equilibrium constant
- The value of the equilibrium constant is independent of the starting concentration or pressure of the reactants and products
- The value of the equilibrium constant is dependent on the temperature

Equilibrium Constant Expression

- For a reaction where
- $\mathrm{aA}(\mathrm{g})+\mathrm{bB}(\mathrm{g}) \rightleftharpoons \mathrm{cC}(\mathrm{g})+\mathrm{dD}(\mathrm{g})$
- A, B, C, D all gases
- a, b, c, d are the coefficients of the balanced equation
- K is the equilibrium constant

$$
K=\frac{\left(P_{C}\right)^{c}\left(P_{D}\right)^{d}}{\left(P_{A}\right)^{a}\left(P_{B}\right)^{b}}
$$

- All partial pressures must be expressed in atmospheres
- Product terms are in the numerator
- Reactant terms are in the denominator
- Coefficients of reactants and product are used as powers
- This K can be termed K_{p} (pressure equilibrium constant)

Changing the Chemical Reaction

- K depends on the equation written to describe the chemical reaction underlying the equilibrium
- Changing the reaction changes K
- The coefficient rule:
- If the reaction is multiplied by a number, n, then K is raised to that power:
- For $\mathrm{n}=2$

$$
K=\frac{\left(P_{\mathrm{NO}_{2}}\right)^{4}}{\left(P_{\mathrm{N}_{2} \mathrm{O}_{4}}\right)^{2}}
$$

- $2 \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 4 \mathrm{NO}_{2}(\mathrm{~g})$
- For $\mathrm{n}=1 / 2$ (i.e., divide the reaction by two):
- $1 / 2 \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons \mathrm{NO}_{2}(\mathrm{~g})$

$$
K=\frac{\left(P_{\mathrm{NO} 2}\right)}{\left(P_{\mathrm{N}_{2} \mathrm{O}_{4}}\right)^{\frac{1}{2}}}
$$

Changing the Chemical Reaction, (Cont'd)

- For the forward and reverse reactions, the K expressions are the reciprocals of each other (the reciprocal rule)
- For $2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$,

$$
K=\frac{\left(P_{\mathrm{N}_{2} \mathrm{O}_{4}}\right)}{\left(P_{\mathrm{NO}_{2}}\right)^{2}}
$$

Adding Chemical Equations

- The rule of multiple equilibria
- If a reaction can be expressed as the sum of two or more reactions, the K for the overall reaction is the product of the K values for the individual reactions
- Consider
- $\mathrm{SO}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{3}(\mathrm{~g}) \quad \mathrm{K}=2.2$
- $\mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{NO}(\mathrm{g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})$
$K=4.0$
- For

$$
\text { - } \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{3}(\mathrm{~g})+\mathrm{NO}(\mathrm{~g}) \mathrm{K}=8.8
$$

Table 12.3

TABLE 12.3 Dependence of K on the Form of the Chemical Reaction

Example 12.1, (Cont'd)

(0) STRATEGY

1. Start with two moles of NO, which is a product in Equation (1) but a reactant in the desired equation. Reverse

Equation (1) and apply the reciprocal rule.
2. Focus on two moles of NO_{3}, which is the product in Equation (2) and in the desired equation. Change is unneessary.
3. Add the two equations.
4. Apply the rule of multiple equilibria

SOLUTION
2. Reverse Equation (1). $\quad 2 \mathrm{NO}(g) \rightleftharpoons \mathrm{N}_{2}(g)+\mathrm{O}_{2}(g) \quad \mathrm{K}^{\prime}$

Apply reciprocal rule. $\quad K^{\prime}=\frac{1}{K_{1}}=\frac{1}{4.2 \times 10^{-41}}$
2. Keep Equation (2).
3. Overall equation

$$
\mathrm{N}_{2}(g)+2 \mathrm{O}_{2}(g) \rightleftharpoons 2 \mathrm{NO}_{2}(g) \quad K_{1}=1.0 \times 10^{-3}
$$

$$
2 \mathrm{NO}(g) \Longrightarrow \mathrm{N}_{-}(g)+\mathrm{O}_{2}(g) \quad \mathrm{K}^{\prime}=\frac{1}{4.2 \times 10^{-11}}
$$

$$
\frac{\mathrm{N}_{1}(g)+2 \mathrm{O}_{2}(g) \rightleftharpoons 2 \mathrm{NO}_{2}(g)}{2 \mathrm{NO}(g)+\mathrm{O}(g) \rightleftharpoons 2 \mathrm{NO}_{3}(g)} \quad \frac{K_{1}=10 \times 10^{-\mathrm{s}}}{K=\left(K^{\prime}\right)\left(K_{3}\right)}
$$

$$
2 \mathrm{NO}(g)+\mathrm{O}_{3}(g) \rightleftharpoons 2 \mathrm{NO}_{2}(g) \quad \bar{K}=\left(K^{\prime}\right)\left(K_{2}\right)
$$

4. K
$K=\left(\frac{1}{4.2 \times 10^{-31}}\right)\left(1.0 \times 10^{-14}\right)=2.4 \times 10^{17}$

Heterogeneous Equilibria

- In mixed-phase systems, note that the liquids and solids present do not change with time
- Pure solids and pure liquids do not appear in equilibrium expressions
- The position of equilibrium is independent of the amount of solid or liquid, as long as some is present in the reaction mixture

Example 12.1, (Cont'd)

Carbon-Dioxide-Hydrogen Equilibrium

- $\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ at $25^{\circ} \mathrm{C}$
- The equilibrium vapor pressure of water at $25^{\circ} \mathrm{C}$ is constant
- Water is left out of the equilibrium expression since its pressure does not change

$$
K=\frac{P_{\mathrm{CO}}}{P_{\mathrm{CO}_{2}} P_{\mathrm{H}_{2} \mathrm{O}}}
$$

Table 12.4

Example 12.2

Write the expresion for K for

(a) the reduction of black solid copper(II) oxide (1 mol) with hydrogen to form copper metal and steam.
(b) the reaction of one mole of steam with red-hot coke (carbon) to form a mixture of hydrogen and carbon monoxide. called water gas.
2. Write a balanced chemical equation for the equilibrium system. Do not forget to indude physical states.
2. Write the expression for K. leaving out pure solids and liquids.
2. Reall that gases are represented by their partial presures.

OLUTION
(a) Reaction

$$
\begin{aligned}
& \mathrm{CuO}(s)+\mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{Cu}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \\
& \mathrm{K}=\frac{P_{\mathrm{H}} \mathrm{O}}{P_{\mathrm{H}}} \\
& \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{C}(s) \rightleftharpoons \mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~s}) \\
& \mathrm{K}=\frac{\left(P_{\mathrm{H}}\right)\left(P_{\infty}\right)}{R_{n}}
\end{aligned}
$$

Heterogeneous Equilibrium - I_{2}

Determination of K

- K can be evaluated numerically by experiment
- One of two sets of data will be used
- Equilibrium pressures, which may be used directly to determine the value for K
- Original pressures, which must be algebraically linked to the equilibrium pressure ultimately used to determine the value for K

Recap

- In the equilibrium expression, always include
- Partial pressures for gases, raised to the coefficient of each
- Molar concentrations for aqueous species (molecules or ions), raised to the coefficient of each
- Always exclude
- Terms for pure liquids and pure solids
- $\mathrm{Zn}(\mathrm{s})+2 \mathrm{H}^{+}(\mathrm{aq}) \leftrightarrows \mathrm{Zn}^{2+}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
- $K=\frac{\left[\mathrm{Zn}^{2+}\right] p_{\mathrm{H}_{2}}}{\left[\mathrm{H}^{+}\right]^{2}}$

Example 12.3

Example 12.4

Example 12.4, (Cont'd)

Fundamentals of Equilibrium Problems

- As a system approaches equilibrium, changes in partial pressures of reactants and products are related to each other through the coefficients of the balanced equation
- The same holds for changes to molar amounts
- The balanced equation is the key to setting up and solving equilibrium problems

Applications of the Equilibrium Constant

- The magnitude of the equilibrium constant translates directly into the extent of reaction
- Reactions are feasible as written only if K is large enough that an appreciable amount of product forms
- Consider the reaction
- $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})$
- $\mathrm{K}=1 \times 10^{-30}$ at $25^{\circ} \mathrm{C}$
- This reaction does not proceed to any great extent at this temperature, so nitrogen and oxygen in air do not react appreciably at room temperature

Synthesis of Ammonia

- $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$
- $\mathrm{K}=6 \times 10^{5}$ at $25^{\circ} \mathrm{C}$
- When the reaction reaches equilibrium, mostly product (ammonia) is present
- Conclusions
- If K is very small, the mixture contains mostly unreacted reactants at equilibrium
- If K is large, the mixture contains mostly products at equilibrium

Direction of Reaction; the Reaction Quotient, Q

- We can define a new quantity called the reaction quotient, Q
- Q has the same form as the equilibrium expression
- Values for reactant and product need not be equilibrium pressures
- For $\mathrm{aA}(\mathrm{g})+\mathrm{bB}(\mathrm{g}) \rightleftharpoons \mathrm{cC}(\mathrm{g})+\mathrm{dD}(\mathrm{g})$

$$
Q=\frac{\left(P_{C}\right)^{c}\left(P_{D}\right)^{d}}{\left(P_{A}\right)^{a}\left(P_{B}\right)^{b}}
$$

Q and the Direction of Reaction

- When we start with only reactants
- $\mathrm{aA}(\mathrm{g})+\mathrm{bB}(\mathrm{g}) \rightleftharpoons \mathrm{cC}(\mathrm{g})+\mathrm{dD}(\mathrm{g})$
- P_{C} and P_{D} are 0 , so $Q=0$
- When we start with only products
- P_{A} and P_{B} are 0 , so $Q \rightarrow \infty$
- Q can take any value from zero to infinity

Table 12.5

TABLE 12.5 Approach to Equilibrium in the System $\mathbf{A} \rightleftharpoons \mathbf{B}$ for which $\boldsymbol{K}=\mathbf{1 . 0 0}$									
Experiment 1^{*}									
t									
$[B]$									

*In both experiments, systems to the right of the broken line have reached equilibrium

Q and the Direction of Reaction, (Cont'd)

- Comparing Q and K
- When $Q<K$, the reaction proceeds from left to right
- When $Q>K$, the reaction proceeds from right to left
- When $Q=K$, the reaction is at equilibrium

Example 12.5, (Cont'd)

SOLUTION	
2. $P_{x \rho}$ $P_{\text {mos }}$ $2 Q$ 3. Direction	$P=\frac{n R T}{V}=\frac{(0.10)(0.0821)(373)}{2.0}=1.5 \mathrm{~atm}$ Since V and T are constant, n is proportional to P, and P can be obtained using the stoichioimetric ratio of NO_{2} and $\mathrm{N}_{2} \mathrm{O}_{4}$. 1.5 atm for $\mathrm{N}_{2} \mathrm{O}_{4} \times \frac{2 \mathrm{~mol} \mathrm{NO}_{2}}{1 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{O}_{4}}=3.0 \mathrm{~atm}$ $Q=\frac{\left(P_{\mathrm{NO}_{1}}\right)^{2}}{P_{\mathrm{x}, \mathrm{O}_{4}}}=\frac{(3.0)^{2}}{1.5}=6.0$ $Q(6.0)<K(11) \quad$ The reaction proceeds from left to right (\rightarrow).
	END POINT
When we say that the reaction proceeds from left to right or in the forward direction, we refer to the reaction as written. In this case, the partial pressure of NO_{2} increases while that of $\mathrm{N}_{2} \mathrm{O}_{4}$ decreases until the system reaches equilibrium.	

Equilibrium Partial Pressures

- The equilibrium constant can be used to calculate the partial pressures of the species present at equilibrium

1. Using the balanced equation, write the K expression
2. Express the equilibrium partial pressures in terms of a single unknown.

Use the balanced equation to make the expression
3. Substitute into the expression for K to find the unknown in (2)
4. Calculate the equilibrium partial pressures using (3)

Example 12.6, (Cont'd)

Example 12.6, (Cont'd)

Example 12.6, (Cont'd)

Changes to Equilibrium Systems

- Several changes can disturb a system in equilibrium

1. Adding or removing a gaseous reactant or product
2. Compressing or expanding the system
3. Changing the temperature

$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$

- Adding $\mathrm{N}_{2} \mathrm{O}_{4}$ will cause a shift from left to right
- Adding NO_{2} will cause a shift from right to left
- Removing $\mathrm{N}_{2} \mathrm{O}_{4}$ will cause a shift from right to left
- Removing NO_{2} will cause a shift from left to right
- It is possible to use K to calculate the extent to which the shift occurs when a reactant or product is added or removed

LeChâtelier's Principle

- Henri LeChâtelier (1850-1936)
- If a system at equilibrium is disturbed by a change in concentration, pressure, or temperature, the system will, if possible, shift to partially counteract the change and restore equilibrium

Example 12.7

In Example 12.4 you found that the $\mathrm{HI}-\mathrm{H}_{2}-\mathrm{I}_{2}$ system is in equilibrium at $520^{\circ} \mathrm{C}$ when $P_{10}=0.80$ atm and $P_{\mathrm{H}}=P_{1}=$ 0.10 atm . Suppose enough HI is added to raise is pressure temporarily to L .00 atm . When equilibrium is restored, what are $P_{4,}, P_{H,}$ and $P_{1,}$?

Example 12.7, (Cont'd)

END POINT

Note that the equilibrium partial pressure of HI is intermediate between its value before equilibrium was established (0.80 atm) and that immediately afferward $(.00 \mathrm{~atm})$. This is exactly what LeChatelier's principle predicts part of the added
HIl 1 c consumed to reestablish cquilibrium! HI is consumed to reestablish equilibrium!

Volume Changes

- Consider again the equilibrium
- $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$
- Reducing the volume will increase the pressure
- Recall that $P=n R T / V$
- Pressure and volume are inversely related
- As V becomes smaller, P becomes larger
- Now consider the system response
- By shifting to the left, two moles of gas are consumed and one is produced
- The pressure is reduced by shifting to the left, so the stress is counteracted

Figure 12.3

Table 12.6

TABLE 12.6 Effect of Compression on the Equilibrium System $\mathrm{N}_{2} \mathrm{O}_{4}(g) \rightleftharpoons 2 \mathrm{NO}_{2}(g) ; K=11$ at $100^{\circ} \mathrm{C}$

| |
| :---: | :---: | :---: |
| TABLE 12.6 Effect of Compression on the Equilibrium System |
| $\mathbf{N}_{2} \mathbf{O}_{4}(g) \rightleftharpoons \mathbf{N O}_{2}(g) ; \boldsymbol{K}=11$ at $100^{\circ} \mathrm{C}$ |

Pressure Changes

- When a system is compressed, the total pressure increases, causing the system to shift in the direction that decreases the total number of moles of gas
- When a system is expanded, the total pressure decreases, causing the system to shift in the direction that increases the total number of moles of gas
- If the total number of moles of gas is the same on both sides of the equation, pressure change will have a small or negligible effect on the equilibrium

Changes in Temperature

- In increase in temperature favors the endothermic reaction
- $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$
$\Delta H^{\circ}=+57.2 \mathrm{~kJ}$
- Increasing the temperature favors the formation of NO_{2}
- $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\circ}=-92.2 \mathrm{~kJ}$
- Increasing the temperature favors the formation of N_{2} and H_{2}
- The reverse reaction is endothermic

Applying the van't Hoff Equation

- $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\circ}=-92.2 \mathrm{~kJ}$
- $\mathrm{K}=6 \times 10^{5}$ at $25^{\circ} \mathrm{C}$
- Calculate K at $100^{\circ} \mathrm{C}$
- Convert temperatures to Kelvin and ΔH° to J
- K at $100^{\circ} \mathrm{C}=4 \times 10^{2}$
- Note that K becomes smaller as T increases because of the negative enthalpy change
- For reactions with positive $\Delta \mathrm{H}^{\circ}, \mathrm{K}$ increases with temperature

Two-Point Equilibrium Constant Equation

- van't Hoff Equation

$$
\ln \left(\frac{K_{2}}{K_{1}}\right)=\frac{\Delta H^{\circ}}{R}\left[\frac{1}{T_{1}}-\frac{1}{T_{2}}\right]
$$

- Same form as the Clausius-Clapeyron and Arrehius rateconstant equations
- K_{2} and K_{1} are equilibrium constants corresponding to T_{2} and T_{2}
- $\Delta \mathrm{H}^{\circ}$ is the enthalpy change for the reaction

Final Notes

- We have examined three changes in conditions:

1. Adding or removing a gas
2. Compressing or expanding the system
3. Changing the temperature

- The only way to change the equilibrium constant is to change the temperature at which the reaction takes place.

Key Concepts

1. Relate the expression for K to the corresponding equation for the chemical reaction
2. Calculate K knowing

- appropriate K values for other reactions
- all the equilibrium partial pressures
- all the original and one equilibrium partial pressure

3. Use the value of K to determine

- the direction of the reaction
- equilibrium partial pressures of all species

4. Use LeChâtelier's principle to determine what will happen when the conditions on an equilibrium system are changed

[^0]: -Boldface numbers are equilibrium pressure

