

BROOKS/COLE CENGAGE Learning

William L Masterton Cecile N. Hurley Edward J. Neth

cengage.com/chemistry/masterton

Chapter 13
Acids and Bases

Edward J. Neth • University of Connecticut

Brønsted-Lowry Acid-Base Model

- Brønsted-Lowry
 - Johannes Brønsted (1879-1947)
 - Thomas Lowry (1874-1936)
- Brønsted-Lowry model focuses on the *reaction that takes place between acid and base*, rather than on
 the independent nature of the acid or base, as the
 Arrhenius model does
 - · Acids donate H+ to bases
 - · Bases accept H+ from acids

Outline

- 1. Brønsted-Lowry acid-base model
- 2. The ion product of water
- 3. pH and pOH
- 4. Weak acids and their equilibrium constants
- 5. Weak bases and their equilibrium constants
- 6. Acid-base properties of salt solutions
- Extending the concept of acids and bases: the Lewis model

The Nature of H+

- The H⁺ ion is the medium of exchange in a Brønsted-Lowry reaction
 - H+ can also be called a proton
 - · Acid-base reactions involve proton exchange

Review from Chapter 4

- The Arrhenius definition of acid and base
 - · Acids produce H+ in water
 - Bases produce OH- in water
 - H⁺ from acids combines with OH⁻ from bases to produce water in a reaction called a neutralization

Conjugate Pairs

- The species that forms when a proton is removed from an acid is called the *conjugate base* of the acid
 - If the acid is HB, the conjugate base is B-
- The only difference between the members of a conjugate acid-base pair is the position of the proton
- A species that can either accept or donate a proton is called amphiprotic
 - · Consider water:
 - OH $^{-} \leftarrow H_2O \rightarrow H_3O^{+}$

Remove H⁺ Add H⁺

Examples of Conjugate Acid-Base Pairs

Conjugate Acid	Conjugate Base
HF	F ⁻
HSO ₄ -	SO ₄ ²⁻
NH ₄ +	NH ₃

The Hydronium Ion

- Another way to write the H⁺ ion is as H₃O⁺
 - H₃O+ is the hydronium ion
 - H+ exists in water as hydronium ion, since H+ itself would not be stable in water
 - · Depending on the reason for writing the reaction, either H+ or H₃O+ can be used, and interchangeably
 - The only difference is the inclusion or exclusion of the H₂O molecule

The Ion Product of Water

- · Water can react with itself in a reaction called autoionization
- · Water can react with itself in an acid-base reaction:
 - $H_2O + H_2O \rightleftharpoons H_3O^+$ (aq) + OH^- (aq)
- An alternate way to write the reaction is:
 - $H_2O \rightleftharpoons H^+$ (aq) + OH^- (aq)

Example 13.1

(a) What is the conjugate base of HNO₂? The conjugate acid of F⁻? (b) The HCO_3^- ion, like the H_2O molecule, is amphiprotic. What is its conjugate base? Its conjugate acid?

STRATEGY

- 1. Form the conjugate base by removing one H atom. Decrease the charge by one unit (e.g., -1 to -2).
- 2. Form the conjugate acid by adding one H atom. Increase the charge by one unit (e.g., -1 to 0).

- Equilibrium and the Auto-Ionization of Water
- $H_2O \rightleftharpoons H^+$ (aq) + OH^- (aq)
 - · Recall that concentrations can be used to write equilibrium constant expressions
 - K for this reaction is [H⁺][OH⁻]
 - This K is called the *ion product constant of* water, K_w
 - $K_w = [H^+][OH^-]$
 - At 25 °C, $K_w = 1.0 \times 10^{-14}$

Concentrations of H⁺ and OH⁻ in pure water

- For water, [H+][OH-] = 1.0 X 10-14
- In pure water, the two concentrations are equal:
 - $[H^+] = 1.0 \times 10^{-7} M$
 - $[OH^{-}] = 1.0 \times 10^{-7} M$
- · Since one concentration must rise as the other falls,
 - If [H+] > 1.0 X 10^{-7} M, then [OH-] < 1.0 x 10^{-7} M and the solution is acidic
 - If [OH-] > 1.0 X 10-7 M, then [H+] < 1.0 x 10-7 M and the solution is basic

Figure 13.1 In any water solution at 25°C [H¹] × [OH¹] = 1.0 × 10⁴H Figure 13.1 In any water solution at 25°C [H¹] × [OH¹] = 1.0 × 10⁴H In any water solution at 25°C [H¹] (units are 1.0 × 10⁴H)

Defining equation for pH pH = -log[H⁺] [H⁺] = anti log(-pH) = 10^{-pH} The higher the pH, the less acidic the solution The lower the pH, the more acidic the solution

small decreases in [H+] can lead to alkalosis · Effective control of many physiological reactions depends on pH control

pH of Strong Acids

- · Recall from Chapter 4 that some acids are strong
 - HCI, HBr, HI, HCIO₄, HNO₃, H₂SO₄
 - These completely ionize in water
 - [H+] is equal to the [H+] of the acid
 - A 0.10 M solution of HCl has [H+] = 0.10 M, so the pH of the solution is 1.00

pH Indicators

- Universal indicator
 - Mixture of substances that change color depending on the concentration of H+
 - Less accurate than pH meter
 - Depending on the indicator used, can display pH over a narrow or wide range of [H⁺]
- · Some plants can act as pH indicators
 - Color of some flowers in plants is dependent on the pH of the soil in which the plant is grown

Weak Acids and their Equilibrium Constants

- · Weak acids ionize only partially
- · Prototype reaction
 - HB (aq) + $H_2O \rightleftharpoons H_3O^+$ (aq) + B^- (aq)
- · Two types of species that behave as weak acids
 - 1. Molecules with an ionizable hydrogen atom
 - HNO_2 (aq) + $H_2O \rightleftharpoons H_3O^+$ (aq) + NO_2^- (aq)
 - Cations
 - NH_4^+ (aq) + $H_2O \rightleftharpoons H_3O^+$ (aq) + NH_3 (aq)

Metal Cations as Acids

- Many metal cations act as weak acids in water solution as well
 - $Zn(H_2O)_4^{2+}$ (aq) + $H_2O \rightleftharpoons H_3O^+$ (aq) + $Zn(H_2O)_3(OH)^+$ (aq)
 - The bond that forms between the oxygen and the metal ion weakens the O-H bond
 - H+ is more easily ionized as a result of the weakened bond

Percent Ionization

· The percent ionization of a weak acid is defined as

$$\%ionization = \frac{[H^+]_{equilibrium}}{[HB]_{initial}} \times 100\%$$

- For the calculation in example 13.5, the percent ionization is about 12 %
 - Note that the percent ionization depends on the molarity of the weak acid

Calculating [H⁺] in a Water Solution of a Weak Acid

- We can use the process for calculating equilibrium pressure for gaseous reactions that we looked at in Chapter 12 to calculate the equilibrium concentration of [H+] for a weak acid
- The relationship between [HB], [H+] and [B-] is given in the equilibrium expression itself

Algebra Review - Quadratic Equations

· Recall that for a quadratic equation in the form

$$ax^2 + bx + c = 0$$

· The roots are

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Approximations Used in Calculations

- The value of K_a is usually known no more accurately than about ±5%
- When solving for the unknowns used to work the equilibrium problem, for the expression

$$K_a = \frac{x^2}{a - x}$$

 Where a is the initial concentration of weak acid, you can neglect x in the denominator if doing so does not introduce an error of more than 5%, i.e.,

if
$$\frac{x}{a} \le 0.05$$
, then $a - x \approx a$

END POINT Note that the concentration of H*, 0.0012 M, is much smaller than the original concentration of the weak acid, 0.10 M. In this case, then, the approximation 0.10 – x ≈ 0.10 is justified. This will usually, but not always, be the case (see Example 13.8). much larger than [H*] in pure water, 1 × 10⁻⁷ M, justifying the assumption that the ionization of water can be neglected. This will always be the case, provided [H*] from the weak acid is ≥ 10⁻⁶ M.

Approximations and Percent Ionization

• When

$$\frac{x}{a} = \frac{[H^+]_{eq}}{[HB]_o}$$

• Multiplying by 100% will give the percent ionization:

$$\frac{x}{a}\% = \frac{[H^+]_{eq}}{[HB]_o} \times 100\%$$

- If the percent ionization is 5% or less, you may make the approximation.
- If the percent ionization is greater than 5%, the quadratic formula or the successive approximation method is required

Polyprotic Weak Acids

- Acids containing more than one ionizable hydrogen are called polyprotic
 - The anion formed in one step produces another H+ in a successive ionization step
 - The equilibrium constant becomes smaller with each successive step

Weak Bases and their Equilibrium Expressions Types of weak bases Molecules Ammonia, NH₃, and amines NH₃ (aq) + H₂O NH₄ (aq) + OH (aq) Anions Anions derived from weak acids are weak bases I (aq) + H₂O HI (aq) + OH (aq)

Calculation of [OH-] in a Weak Base Solution

 The process of calculating the [OH-] in a weak base solution is the same as the process for calculating [H+] in a weak acid solution

Relation between K_a and K_b

- Consider the relation between a conjugate acid-base pair
 - HB (aq) \rightleftharpoons H⁺ (aq) + B⁻ (aq) $\qquad \qquad$ K_I= K_a of HB
 - $B^{-}(aq) + H_2O \rightleftharpoons HB (aq) + OH^{-}(aq) K_{II} = K_b \text{ of } B^{-}$
- These add to
 - $H_2O \rightleftharpoons H^+$ (aq) + OH^- (aq) $K_{III} = K_w$
- Since $K_1K_{11}=K_{111}$, $K_aK_b=K_w=1.0 \times 10^{-14}$
 - for a conjugate acid base pair only
 - In log form, $pK_a + pK_b = pK_w = 14.00$

Notes on Acid-Base Strength

- K_a and K_b are inversely related
 - The larger K_a is, the smaller K_b is
- Features
 - · Brønsted-Lowry acids
 - · Strong acids
 - · Weak acids
 - Acids weaker than water (conjugates of strong bases)
 - Brønsted-Lowry bases
 - · Strong bases
 - · Weak bases
 - Bases weaker than water (conjugates of strong acids)

Acid-Base Properties of Solutions of Salts

- A salt is an ionic solid containing a cation other than H⁺ and an anion other than OH⁻ or O²⁻
- We can predict whether a salt will be acidic, basic or neutral by
 - 1. Deciding what effect the cation has on water
 - Is it acidic or is it neutral?
 - 2. Deciding what effect the anion has on water
 - Is it basic or is it neutral?
 - 3. Combining the two effects to decide the behavior of the salt in water

Cations

- · Weak acid or spectator ion?
 - · Most cations are acidic
 - These will change the pH by more than 0.5 pH units in a 0.1 M solution
 - Exceptions these are spectators
 - · Alkali metal cations
 - Heavier alkaline earth cations (Ca2+, Sr2+, Ba2+)

Hydride ion

- Reaction of water with CaH₂
 - H⁻ is the conjugate base of H₂, a very weak acid
 - As a result, H⁻ is an extremely strong base

Anions

- · Weak base or spectator ion?
 - Many anions are weak bases
 - These will change the pH by more than 0.5 pH units at 0.1 M
 - Exceptions these are spectators
 - Anions of very strong acids: Cl⁻, Br⁻, I⁻, NO₃⁻, ClO₄⁻

Lewis Acids

- The concept of a Lewis acid extends the acid-base model
 - The Lewis model greatly expands the number of species considered to be acids
 - For example, metal cations are *not* Brønsted-Lowry acids but are Lewis acids

Extending the Concept of Acids and Bases

- · The Lewis Model
 - · A Lewis base donates a pair of electrons
 - · A Lewis acid accepts a pair of electrons

Table 13.6 TABLE 13.6 Alternative Definitions of Acids and Bases Model Acid Base Arrhenius Supplies H+ to water Supplies OH- to water Brønsted-Lowry H+ donor H+ acceptor Lewis Electron pair acceptor Electron pair donor

Lewis Bases

- The concept of a Lewis base does not structurally differ from that of a Brønsted-Lowry base
 - For a species to accept a proton, it must contain an atom that possesses a lone pair
 - · Lewis bases are also Brønsted-Lowry bases

Key Concepts

- Classify a substance as a Brønsted-Lowry acid or base and write the net ionic equation to support the classification
- Given [H+], [OH-], pH or pOH, calculate the three other quantities
- 3. Given the pH and original concentration of a weak acid, calculate $\rm K_{\rm a}$
- 4. Given the K_a and original concentration of a weak acid, calculate $[H^+]$
- 5. Given the $K_{\rm b}$ and original concentration of a weak base, calculate [OH $^{-}$]

Key Concepts, (Cont'd)

- 6. Given K_a for a weak acid, calculate K_b for its conjugate base (or vice-versa).
- 7. Predict whether a salt will be acidic, basic or neutral.
- 8. Understand the similarities and differences between Lewis and Brønsted-Lowry acids and bases