

Outline

1. Brønsted-Lowry acid-base model
2. The ion product of water
3. pH and pOH
4. Weak acids and their equilibrium constants
5. Weak bases and their equilibrium constants
6. Acid-base properties of salt solutions
7. Extending the concept of acids and bases: the Lewis model

Brønsted-Lowry Acid-Base Model

- Brønsted-Lowry
- Johannes Brønsted (1879-1947)
- Thomas Lowry (1874-1936)
- Brønsted-Lowry model focuses on the reaction that takes place between acid and base, rather than on the independent nature of the acid or base, as the Arrhenius model does
- Acids donate H^{+}to bases
- Bases accept H^{+}from acids

The Nature of H^{+}

- The H^{+}ion is the medium of exchange in a Brønsted-Lowry reaction
- H^{+}can also be called a proton
- Acid-base reactions involve proton exchange

Review from Chapter 4

- The Arrhenius definition of acid and base
- Acids produce H^{+}in water
- Bases produce OH^{-}in water
- H^{+}from acids combines with OH^{-}from bases to produce water in a reaction called a neutralization

Conjugate Pairs

- The species that forms when a proton is removed from an acid is called the conjugate base of the acid
- If the acid is HB , the conjugate base is B^{-}
- The only difference between the members of a conjugate acid-base pair is the position of the proton
- A species that can either accept or donate a proton is called amphiprotic
- Consider water:
- $\mathrm{OH}^{-} \leftarrow \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}$

Remove $\mathrm{H}^{+} \quad$ Add H^{+}

Examples of Conjugate Acid-Base Pairs

Conjugate Acid	Conjugate Base
HF	F^{-}
HSO_{4}^{-}	$\mathrm{SO}_{4}{ }^{2-}$
NH_{4}^{+}	NH_{3}

The Hydronium Ion

- Another way to write the H^{+}ion is as $\mathrm{H}_{3} \mathrm{O}^{+}$
- $\mathrm{H}_{3} \mathrm{O}^{+}$is the hydronium ion
- H^{+}exists in water as hydronium ion, since H^{+}itself
would not be stable in water
- Depending on the reason for writing the reaction, either H^{+}or $\mathrm{H}_{3} \mathrm{O}^{+}$can be used, and interchangeably
- The only difference is the inclusion or exclusion of the $\mathrm{H}_{2} \mathrm{O}$ molecule

Example 13.1, (Cont'd)

(a) HNO_{2} conjugate base	$\mathrm{HNO}_{2} \longrightarrow \mathrm{NO}_{2}{ }^{\text {a-1 }} \longrightarrow \mathrm{NO}_{2}^{-}$
F- conjugate acid	$\mathrm{F}^{-} \longrightarrow \mathrm{HF}^{-1+1} \longrightarrow \mathrm{HF}$
(b) HCO^{-}- conjugate base	$\mathrm{HCO}_{3}{ }^{-} \longrightarrow \mathrm{CO}_{3}{ }^{-1-1} \longrightarrow \mathrm{CO}^{2-}$
HCO,- conjugate acid	$\mathrm{HCO}_{3}-\longrightarrow \mathrm{H}_{2} \mathrm{CO}_{3}{ }^{-1+1} \longrightarrow \mathrm{H}_{2} \mathrm{CO}_{3}$

Example 13.1	
EXAMPLE 13.1	
(a) What is the conjugate base of HNO_{2} ? The conjugate acid of F -? (b) The $\mathrm{HCO},-$ ion, like the $\mathrm{H}_{2} \mathrm{O}$ molecule, is amphiprotic. What is is conjugate base? Its conjugate acid?	
strategr	
1. Form the conjugate base by removing one H atom. Decrease the charge by one unit (e.g. -1 to -2). 2. Form the conjugate acid by adding one H atom. Increase the charge by one unit (e.g. - 1 to 0).	ammmat

The Ion Product of Water

- Water can react with itself in a reaction called autoionization
- Water can react with itself in an acid-base reaction:
- $\mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
- An alternate way to write the reaction is:
- $\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$

Concentrations of H^{+}and OH^{-}in pure water

- For water, $\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14}$
- In pure water, the two concentrations are equal:
- $\left[\mathrm{H}^{+}\right]=1.0 \times 10^{-7} \mathrm{M}$
- $\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-7} \mathrm{M}$
- Since one concentration must rise as the other falls,
- If $\left[\mathrm{H}^{+}\right]>1.0 \times 10^{-7} \mathrm{M}$, then $\left[\mathrm{OH}^{-}\right]<1.0 \times 10^{-7} \mathrm{M}$ and the solution is acidic
- If $\left[\mathrm{OH}^{-}\right]>1.0 \times 10^{-7} \mathrm{M}$, then $\left[\mathrm{H}^{+}\right]<1.0 \times 10^{-7} \mathrm{M}$ and the solution is basic

Figure 13.2

pOH

- Defining equation for pH

$$
\begin{aligned}
& \mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right] \\
& {\left[\mathrm{OH}^{-}\right]=\text {antilog }[-\mathrm{pOH}]=10^{-\mathrm{pOH}}}
\end{aligned}
$$

- The higher the pOH , the more basic the solution
- The lower the pOH , the more acidic the solution

Relationship between pH and pOH

$$
\begin{aligned}
& {\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14}} \\
& \mathrm{pH}+\mathrm{pOH}=14.00
\end{aligned}
$$

Table 13.1: pH of Some Common Materials

Lemon juice	2.2-2.4	Urine, human	4.8-8.4
Wine	2.8-3.8	Cow's milk	6.3-6.6
Vinegar	3.0	Saliva, human	6.5-7.5
Tomato juice	4.0	Drinking water	5.5-8.0
Beer	4-5	Blood, human	7.3-7.5
Cheese	4.8-6.4	Seawater	8.3

Example 13.2, (Cont'd)

pH and Blood

- From the previous example, it is seen that the $\left[\mathrm{H}^{+}\right]$in blood is very small, about $4.0 \times 10^{-8} \mathrm{M}$
- Small changes in $\left[\mathrm{H}^{+}\right]$can have dramatic physiological effects
- Many biological reactions depend on $\left[\mathrm{H}^{+}\right]$
- An increase in $\left[\mathrm{H}^{+}\right]$from 4.0×10^{-8} to 4.0×10^{-7} can increase the reaction rate by a power of 10
- Small increases in $\left[\mathrm{H}^{+}\right]$can lead to acidosis; small decreases in $\left[\mathrm{H}^{+}\right]$can lead to alkalosis
- Effective control of many physiological reactions depends on pH control

pH of Strong Acids

- Recall from Chapter 4 that some acids are strong
- $\mathrm{HCl}, \mathrm{HBr}, \mathrm{HI}, \mathrm{HClO}_{4}, \mathrm{HNO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}$
- These completely ionize in water
- $\left[\mathrm{H}^{+}\right]$is equal to the $\left[\mathrm{H}^{+}\right]$of the acid
- A 0.10 M solution of HCl has $\left[\mathrm{H}^{+}\right]=0.10 \mathrm{M}$, so the pH of the solution is 1.00

Figure 13.3

pH of Strong Bases

- Recall as well that some bases are strong:
- $\mathrm{LiOH}, \mathrm{NaOH}, \mathrm{KOH}, \mathrm{Ca}(\mathrm{OH})_{2}, \mathrm{Sr}(\mathrm{OH})_{2}, \mathrm{Ba}(\mathrm{OH})_{2}$
- These bases ionize completely to OH^{-}
- pOH is dependent on the concentration of the strong base
- For an 0.10 M solution of NaOH ,
- $\left[\mathrm{Na}^{+}\right]=\left[\mathrm{OH}^{-}\right]=0.10 \mathrm{M}$
- $\mathrm{pOH}=1.00$
- $\mathrm{pH}=13.00$

Example 13.3, (Cont'd)

(b) Stubekta		
ANALYSIS		
Information given:	pH (13.51) mass $\mathrm{Ba}(\mathrm{OH})_{2}$ a added by Student $\mathrm{A}(4.23 \mathrm{~g}$) volume of solution (455 mL)	
Information implied.	molar mass of $\mathrm{Ba}(\mathrm{OH})_{2} K_{\sim}$	
Asked for:	mass $\mathrm{Ba}(\mathrm{OH})_{2}$ added compared with Student A	nostimund
StRATEGY		
1. The pathway to follow is the reverse of that in part (a): $\mathrm{pH} \xrightarrow{\mathrm{Eq} .13 .3}\left[\mathrm{H}^{+} \mid \xrightarrow{\mathrm{K}}\left[\mathrm{OH}^{-}\right] \xrightarrow{2\left[\mathrm{OH}^{-}\right] /\left[\mathrm{Ba}(\mathrm{OH})_{2}\right]}\left[\mathrm{Ba}(\mathrm{OH})_{2} \mid \xrightarrow{V} \text { mol } \mathrm{Ba}(\mathrm{OH})_{2} \xrightarrow{\mathrm{MM}}\right. \text { mass }\right.$ 2. Compare masses used by Students A and B ,		
SOLUTION		
$\left[\mathrm{OH}^{-1}\right.$	$\left\|\mathrm{H}^{+}\right\|=10^{-2 \mathrm{LS}}=3.1 \times 10^{-14} \mathrm{M} ; \quad\left[\mathrm{OH}^{-}\right]=\frac{1.0 \times 10^{-14}}{3.1 \times 10^{-14}}=0.32 \mathrm{M}$	
Mass $\mathrm{Ba}(\mathrm{OH})_{2}$ (Student B)	$\frac{0.32 \mathrm{~mol} \mathrm{OH}^{-}}{1 \mathrm{~L}} \times \frac{1 \mathrm{~mol} \mathrm{Ba}\left(\mathrm{OH}_{2}\right.}{2 \mathrm{~mol} \mathrm{OH}^{-}} \times 0.455 \mathrm{~L} \times \frac{171.3 \mathrm{~g} \mathrm{Ba}(\mathrm{OH})_{2}}{1 \mathrm{~mol}}=12 \mathrm{~g}$	
Comparison	Student A: 4.32 g : Student B: 12 g $12-4.32=8 \mathrm{~g}$ more $\mathrm{Ba}(\mathrm{OH})_{2}$ were added by Student B .	

Example 13.3, (Cont'd)

Example 13.3

Measuring pH

- pH can be measured with a pH meter
- Translates $\left[\mathrm{H}^{+}\right]$into an electrical signal
- Signal is shown on an analog or digital meter calibrated in pH units

Figure 13.4: pH of Carbonated Soda

pH Indicators

- Universal indicator
- Mixture of substances that change color depending on the concentration of H^{+}
- Less accurate than pH meter
- Depending on the indicator used, can display pH over a narrow or wide range of $\left[\mathrm{H}^{+}\right]$
- Some plants can act as pH indicators
- Color of some flowers in plants is dependent on the pH of the soil in which the plant is grown

Figure 13.6

Weak Acids and their Equilibrium Constants

- Weak acids ionize only partially
- Prototype reaction
- $\mathrm{HB}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{B}^{-}(\mathrm{aq})$
- Two types of species that behave as weak acids

1. Molecules with an ionizable hydrogen atom

- $\mathrm{HNO}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{NO}_{2}^{-}(\mathrm{aq})$

2. Cations

- $\mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{NH}_{3}(\mathrm{aq})$

Figure 13.5: Universal Indicator

Metal Cations as Acids

- Many metal cations act as weak acids in water solution as well
- $\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}{ }^{2+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})^{+}(\mathrm{aq})$
- The bond that forms between the oxygen and the metal ion weakens the O-H bond
- H^{+}is more easily ionized as a result of the weakened bond

Figure 13.7

pKa

- $\mathrm{pK}_{\mathrm{a}}=-\log \mathrm{K}_{\mathrm{a}}$
- The smaller pK_{a} is, the stronger the acid - pK_{a} follows the trend for pH

Equilibrium Constants for Weak Acids

- $\mathrm{HB}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{B}^{-}(\mathrm{aq})$
- K_{a} is the acid equilibrium constant
- Simplifying the above to $\mathrm{HB}(\mathrm{aq}) \Leftrightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{B}^{-}(\mathrm{aq})$

$$
K_{a}=\frac{\left[H^{+}\right]\left[B^{-}\right]}{[H B]}
$$

- K_{a} values are related to the weak acid strength
- The smaller K_{a} is, the weaker the acid is

Example 13.4

Consider acetic add, $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{3}$, and the hydrated zinc cation, $\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}-$

(a) Write equations to show why these species are acidic.
(6) Which is the stronger acid?
© What is the pK , of $\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}{ }^{2+}$
(3) strategy and solution

1. To prove that a species is acidic, you must produce a hydronium ion $\left(\mathrm{H}_{\mathrm{y}} \mathrm{O}^{+}\right)$obtained by transferring an H atom to water.
$\mathrm{HC}_{3} \mathrm{H}_{3} \mathrm{O}_{2}\left(a_{4}\right)+\mathrm{H}_{2} \mathrm{O} \equiv \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}($an $)+\mathrm{HH}_{2} \mathrm{O}$

2. For the hydrated cation, one of the water molecules in the ion donates an H atom to an unattached water molecule Think of $\mathrm{Zn}\left(\mathrm{H}_{-} \mathrm{O}\right)^{2+}$ as $\mathrm{Zn}\left(\mathrm{H}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)^{2+}$

Example 13.4, (Cont'd)

Example 13.5

Aspirin, a commonly used pain reliever, is a weak organic acid whose molecular formula may be written as $\mathrm{HC}, \mathrm{H}, \mathrm{O}, \mathrm{An}$ aqueous solution of aspirin has total volume 350.0 mL and contains 1.26 g of aspirin. The pH of the solution is found to be 2.60. Calculate K, for aspirin.

Information given:

> molecular formula for aspirin (HC,H, $\mathrm{H}, \mathrm{O})$): mass of aspirin $(1.26 \mathrm{~g})$) ovelume of solution $(350.0 \mathrm{~mL}) \mathrm{pH}$ of solution (2.60) volume of solution $(350.0 \mathrm{~mL}$) $) \mathrm{pH}$ of solation (2.60)
Information implied: molar mass of aspirin: $\left[\mathrm{H}^{+}\right]$

Asked for: K_{i}

1. Determine the original concentration. [Lo of aspirin.
2. $\mathrm{PH}=\left[\mathrm{H}^{+}\right)_{\mathrm{m}}$
3. Draw a table as illustrated in Example 12.4. Substitute I 10 for $P_{0} \Delta\left[\right.$ [for ΔP, and I I $l_{\text {en }}$ for P_{ρ} Since only one H atom ionizes at a time, $\Delta \mid$ for all species is the same
Recall that [) stands for the concentration in molarity
4. Write the K expression for the ionization and calculate K_{r}.

Example 13.5, (Cont'd)

SOLUTION				
1. [$]_{0}$ for aspirin 2. $\left[\mathrm{H}^{+}\right]_{\text {en }}$ 3. Table	$\begin{aligned} & \frac{1.26 \mathrm{~g}}{0.3500 \mathrm{~L}} \times \frac{1 \mathrm{~mol}}{180.15 \mathrm{~g}}=0.0200 \mathrm{M} \\ & 2.60=-\log _{0}\left[\mathrm{H}^{+}\right]:\left[\mathrm{H}^{+}\right]=10^{-200}=2.5 \times 10^{-3} \mathrm{M} \end{aligned}$			
		HC, $H_{1} \mathbf{O}$ (qq)	$=\mathrm{H}^{(0 q)}$	
	[$]$	0.0200	00000	0.0000
		-0.0025	+0.0025	+0.0025
	[1]0	0.0175	00025	0.0025
4. Kexpression K	$\mathrm{H}_{3} \mathrm{H}_{5} \mathrm{O}_{4}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^{+}(a q)+\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{4}^{-}(a q)$$K_{4}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{O}_{4}^{-}\right]}{\left[\mathrm{HC}_{3} \mathrm{H}_{2} \mathrm{O}_{4}\right]}=\frac{(0.0025)(0.0025)}{0.0175}=3.6 \times 10^{-4}$			
	END POINT			
Aspirin is a relatively strong weak acid. It would be located near the top of Table 13,2.				

Percent Ionization

- The percent ionization of a weak acid is defined as

$$
\% \text { ionization }=\frac{\left[\mathrm{H}^{+}\right]_{\text {equilibium }}}{[\mathrm{HB}]_{\text {nititial }}} \times 100 \%
$$

For the calculation in example 13.5, the percent ionization is about 12 \%

- Note that the percent ionization depends on the molarity of the weak acid

Figure 13.8-\% Ionization and Concentration

Example 13.6

Calculating $\left[\mathrm{H}^{+}\right]$in a Water Solution of a Weak

 Acid- We can use the process for calculating equilibrium pressure for gaseous reactions that we looked at in Chapter 12 to calculate the equilibrium concentration of $\left[\mathrm{H}^{+}\right]$for a weak acid
- The relationship between $[\mathrm{HB}],\left[\mathrm{H}^{+}\right]$and $[\mathrm{B}]$ is given in the equilibrium expression itself

Example 13.7

```
Nicotinic acid. HC,HH,ONN (K, =14\times10.-5), is another name for niacin, an important member of the vitamin B group.
Determine [\mp@subsup{\textrm{H}}{}{+}] in a solution prepared by dissolving 3.0 g of nicotinic acid (MM = 12.3.1 g/mol), HNic, in enough water to
form 245 mL of solution.
ANALYSIS 
    Information given: }\begin{array}{lll}{|}&{\begin{array}{l}{\mathrm{ molar mass for nicotinic acid, }}\\{\mathrm{ volume of solution (2.45 mL)}}\\{\mp@subsup{K}{*}{\prime}(1.4\times1\mp@subsup{0}{}{-5})}\end{array}}\\{\hline}
Information impliect: [HNE]|
Asked for:
1. Determine the original concentration,| Io of HNic
2. Let }x=\Delta[\mp@subsup{H}{}{*}]\mathrm{ .
    Since all the coefficents in the reaction are one.\Delta[HNic] and }\Delta[\mp@subsup{\textrm{Nic}}{<}{-}]\mathrm{ also equal }x
3. Draw a table as illustrated in Example 13.5.
4. Write the K expression for the ioniration and subsitute the equilibriumn concentrations for HNic, Nic
    from the table.
5. Solve for x. (Assume x<< Nicl, to avoid the quadratic equation.)
6. Substitute the value for x in [H'| ler
```


Example 13.7, (Cont'd)

Approximations and Percent Ionization

- When

$$
\frac{x}{a}=\frac{\left[H^{+}\right]_{e q}}{[H B]_{o}}
$$

- Multiplying by 100% will give the percent ionization:

$$
\frac{x}{a} \%=\frac{\left[H^{+}\right]_{\text {eq }}}{[H B]_{o}} \times 100 \%
$$

- If the percent ionization is 5% or less, you may make the approximation.
- If the percent ionization is greater than 5%, the quadratic formula or the successive approximation method is required

Example 13.8

CXAMPLE 13.8

	ANALYSIS	
Information given:	$\left[\mathrm{HNO}_{2}\right]_{0}(0.100 \mathrm{M}) ;$	
Asked for:	$\left[\mathrm{H}^{+}\right]=\left[\left.\mathrm{H}^{+}\right\|_{\text {eq }}\right.$	

Asked for:	$\left[\mathrm{H}^{+}\right]=\left[\left.\mathrm{H}^{+}\right\|_{\text {eq }}\right.$	continumt

Polyprotic Weak Acids

- Acids containing more than one ionizable hydrogen are called polyprotic
- The anion formed in one step produces another H^{+}in a successive ionization step
- The equilibrium constant becomes smaller with each successive step

Example 13.8, (Cont'd)

Triprotic Acid

- Phosphoric acid
- $\mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq}) \quad \mathrm{K}_{\mathrm{a} 1}$
- $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{HPO}_{4}{ }^{2-}(\mathrm{aq}) \quad \mathrm{K}_{\mathrm{a} 2}$
- $\mathrm{HPO}_{4}{ }^{2-}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{PO}_{4}{ }^{3-}(\mathrm{aq}) \quad \mathrm{K}_{\mathrm{a} 3}$
- $\mathrm{K}_{\mathrm{a} 1}>\mathrm{K}_{\mathrm{a} 2}>\mathrm{K}_{\mathrm{a} 3}$
- With each successive step, the acid becomes progressively weaker

Example 13.8, (Cont'd)

Solution	
Equilibrium expresion	$6.0 \times 10^{-1}=\frac{\left[\mathrm{H}^{-} \cdot\left[\mathrm{NO}_{2}\right]\right.}{\left[\mathrm{HO}_{2}\right]}=\frac{(x)(x)}{0.100-x}$
Assume $x \ll 0.100$.	$6.0 \times 10^{-4}=\frac{x^{2}}{0.100} \longrightarrow x=0.0077 M=\left[H^{+}\right]$
Check the assumption.	$\% \text { ioniation }=\frac{\left[\mathrm{H}^{2}\right]_{4}}{[\mathrm{HB}]} \times 100 \%=\frac{0.0077}{0.100} \times 10060=7.7 \%$
	$7.7 \%>5.0 \%$ - The assumption is not valid.
Use the quadratic equation.	$x^{2}+\left(6.0 \times 10^{-4}\right) x-\left(6.0 \times 10^{-4}\right)=0$
	$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-\left(6.0 \times 10^{-1}\right) \pm \sqrt{\left(6.0 \times 10^{-1}\right)^{2}-4\left(6.0 \times 10^{-3}\right)}}{2}$
	$x=0.0074 . \mathrm{M}$ or -0.0080 M
	$-0.0080 . \mathrm{M}$ is physically imposibibe, so. $x=\left[\mathrm{H}^{+} \mid=0.0074 \mathrm{M}\right.$

Table 13.3

Example 13.9

Example 13.9, (Cont'd)

Sceond ionization	$\mathrm{HCO}^{-}\left(\begin{array}{l}\text { aq }\end{array}\right)$ こ $\mathrm{H}^{*}(\mathrm{aq})+\mathrm{CO}^{2-}(\mathrm{aq})$	$K_{2}=4,7 \times 10^{-14}$
	$4.7 \times 10^{-11}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{CO}^{-}-1\right]}{\left[\mathrm{HCO}_{3}\right]}$	
$\left[\mathrm{CO}^{2+1}\right]$	om fint ionization: [H+	

Weak Bases and their Equilibrium Expressions

- Types of weak bases
- Molecules
- Ammonia, NH_{3}, and amines
- $\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
- Anions
- Anions derived from weak acids are weak bases
- $\mathrm{I}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HI}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$

Example 13.10

Write an equation to explain why each of the following produces a basic water solution.
$\begin{array}{lll}\text { (a) } \mathrm{NO}_{2}^{-} & \text {(b) } \mathrm{Na}_{2} \mathrm{CO}_{3} & \text { (c) } \mathrm{KHCO},\end{array}$

1. React each basic anion with a water molecule.
2. The weak base picks up the proton (H^{+}) and increases its charge by one unit to ccrate its conjugate acid.
3. OH^{-}is the other product of the reaction.

solution

нон
 нон
(c) $\mathrm{HCO}_{-}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O} \rightarrow$ HHCO- $^{-1+}(\mathrm{aq})+\mathrm{OH}^{-}-(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{CO}(\mathrm{Aaq})+\mathrm{OH}^{-}(\mathrm{aq})$ HOH

END POINT
The presence of OH^{-}as a product is the reason these anions in water are considered to be basic.

Weak Base Equilibrium Constant

- $\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
- The base equilibrium constant, K_{b} is

$$
K_{b}=\frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{3}\right]}
$$

- For a generic weak base where
- $\mathrm{B}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O} \Leftrightarrow \mathrm{HB}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$

$$
K_{b}=\frac{\left[H B^{+}\right]\left[\mathrm{OH}^{-}\right]}{[B]}
$$

K_{b} by the Numbers

- As K_{b} becomes larger, base strength increases
- As with acids and K_{a}, we can define a pK_{b} :
- $\mathrm{pK}_{\mathrm{b}}=-\log \mathrm{K}_{\mathrm{b}}$
- As pK_{b} becomes smaller, base strength increases
- The process of calculating the $\left[\mathrm{OH}^{-}\right]$in a weak base solution is the same as the process for calculating $\left[\mathrm{H}^{+}\right]$in a weak acid solution

Example 13.11, (Cont'd)

(b)

Information given:

Asked for:
$K_{\mathrm{b}}=\frac{\left[\mathrm{HOC}^{2}\left[\mathrm{OH}^{-}\right]\right.}{\left[\mathrm{OCl}^{-}\right]}=3.6 \times 10^{-7}=\frac{(x)(x)}{0.193-x}$
$x^{2}=0.193\left(3.6 \times 10^{-7}\right) \longrightarrow x=2.6 \times 10^{-4}$
$\%$ ionization $=0.14 \%$, the assumption is justified. $\left[\mathrm{OH}^{-}\right]=2.6 \times 10^{-4} \mathrm{M}$ $1.0 \times 10^{-4}=\left[\mathrm{H}^{+}\right]\left(2.6 \times 10^{-4}\right) \longrightarrow\left[\mathrm{H}^{+}\right]=3.9 \times 10^{-1 \mathrm{H}} \longrightarrow \mathrm{pH}=10.41$

ANALYSIS
NaOCl content of household bleach (5.25% by mass) density of bleach ($1.00 \mathrm{~g} / \mathrm{mLL}$)
pH of solution in part (a) (10.41)
Compare pH of solution (a) and pH of bleach.

Example 13.11

EXAMPLE 13.11 GRADED

Consider sodium hypochlorite, NaOCl, the main component in houschold bleach. The hypochlorite lon, $\mathrm{OC} 1^{-}$, has $K_{\mathrm{b}}=3.6 \times 10^{-7}$. A solution is prepared by disolving 12.0 g of $\mathrm{NaOCl}(\mathrm{MM}=74.45 \mathrm{~g} / \mathrm{mol})$ in enough water to make 835 mL of solution.
(a) What is the pH of the solution?
(5) Household bleach is 5.25% NaOCl by mass. Assuming that its density is $. .00 \mathrm{~g} / \mathrm{mL}$. is household bleach more alkaline than the prepared solution?

K_{b} for $\mathrm{OCl}^{-}\left(3.6 \times 10^{-7}\right)$
mass of NaOCl (12.0 g): molar mass of $\mathrm{NaOCl}(74.45 \mathrm{~g} / \mathrm{mol})$ volume of solution (0.835 L)
Information implied:
Asked for: Kw pH of the solution

Example 13.11, (Cont'd)

Example 13.11, (Cont'd)

. Assume $100.0 \mathrm{~g}(=100.0 \mathrm{~mL})$ of bleach. Thus, there are 5.25 g of NaOCC in 100.0 mL . of solution.
2. Find $\left\{\mathrm{OH}^{-}\right\} .\left[\mathrm{H}^{+}\right]$, and pH of bleach as in part (a).
3. Compare the pH of both solutions. The solution with a higher pH is more alkaline.

$\left[\mathrm{NaOCl}_{0}=\left[\mathrm{OCC}^{-}\right]_{0}\right.$

K expression
Assume $x \ll 0.705$
Check assumption.
$\left[\mathrm{H}^{+}\right]$; pH
Comparison

$$
\frac{5.25 \mathrm{~g}}{0.100 \mathrm{~L}} \times \frac{1 \mathrm{~mol}}{7.45 \mathrm{~g}}=0.705 \mathrm{M}
$$

$$
\text { (as in part (a)): } K_{4}=\frac{[\mathrm{HOCl}]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{OCl}^{-}\right]}=3.6 \times 10^{-7}=\frac{(x)(x)}{0.705-x}
$$

$$
x^{2}=0.705\left(3.6 \times 10^{-7}\right) \longrightarrow x=5.0 \times 10^{-4}
$$

$\%$ ionization $=0.0715 ;$ the assumption is fustified. $\left[\mathrm{OH}^{-1}\right]=5.0 \times 10^{-4} \mathrm{M}$ $1.0 \times 10^{-4}=\left[\mathrm{H}^{+}\right]\left(5.0 \times 10^{-4}\right) \longrightarrow\left[\mathrm{H}^{+}\right]=2.0 \times 10^{-11} \longrightarrow \mathrm{PH}=10.70$ pH of the solution in part $(\mathrm{a})=10.41 \mathrm{pH}$ of bleach $=10.70$ $10.70>10.41$: bleach is more alkaline than the solution prepared in part (a).
\qquad

Relation between K_{a} and K_{b}

- Consider the relation between a conjugate acid-base pair
- $\mathrm{HB}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{B}^{-}(\mathrm{aq}) \quad \mathrm{K}_{1}=\mathrm{K}_{\mathrm{a}}$ of HB
- $\mathrm{B}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HB}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \mathrm{K}_{\mathrm{ll}}=\mathrm{K}_{\mathrm{b}}$ of B^{-}
- These add to
- $\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \quad \mathrm{K}_{\text {III }}=\mathrm{K}_{\mathrm{w}}$
- Since $\mathrm{K}_{\mathrm{I}} \mathrm{K}_{\text {II }}=\mathrm{K}_{\text {III }}, \mathrm{K}_{\mathrm{a}} \mathrm{K}_{\mathrm{b}}=\mathrm{K}_{\mathrm{w}}=1.0 \times 10^{-14}$
- for a conjugate acid base pair only
- In log form, $\mathrm{pK}_{\mathrm{a}}+\mathrm{pK}_{\mathrm{b}}=\mathrm{pK}_{\mathrm{w}}=14.00$

Notes on Acid-Base Strength

- K_{a} and K_{b} are inversely related
- The larger K_{a} is, the smaller K_{b} is
- Features
- Brønsted-Lowry acids
- Strong acids
- Weak acids
- Acids weaker than water (conjugates of strong bases)
- Brønsted-Lowry bases
- Strong bases
- Weak bases
- Bases weaker than water (conjugates of strong acids)

Acid-Base Properties of Solutions of Salts

- A salt is an ionic solid containing a cation other than H^{+}and an anion other than OH^{-}or O^{2-}
- We can predict whether a salt will be acidic, basic or neutral by

1. Deciding what effect the cation has on water

- Is it acidic or is it neutral?

2. Deciding what effect the anion has on water

- Is it basic or is it neutral?

3. Combining the two effects to decide the behavior of the salt in water

Cations

- Weak acid or spectator ion?
- Most cations are acidic
- These will change the pH by more than 0.5 pH units in a 0.1 M solution
- Exceptions - these are spectators
- Alkali metal cations
- Heavier alkaline earth cations $\left(\mathrm{Ca}^{2+}, \mathrm{Sr}^{2+}, \mathrm{Ba}^{2+}\right)$

Anions

- Weak base or spectator ion?
- Many anions are weak bases
- These will change the pH by more than 0.5 pH units at 0.1 M
- Exceptions - these are spectators
- Anions of very strong acids: $\mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{I}^{-}, \mathrm{NO}_{3}{ }^{-}, \mathrm{ClO}_{4}^{-}$

Salts: Acidic, Basic or Neutral

- By comparing the K_{a} of an acidic cation with the K_{b} of a basic anion, the salt of both can be classified as acidic, basic or neutral
- If $K_{a}>K_{b}$, the salt is acidic
- $\mathrm{NH}_{4} \mathrm{~F}, \mathrm{~K}_{\mathrm{a}}=5.6 \times 10^{-10} ; \mathrm{K}_{\mathrm{b}}=1.4 \times 10^{-11}$
- If $K_{b}>K_{a}$, the salt is basic
- $\mathrm{NH}_{4} \mathrm{ClO}, \mathrm{K}_{\mathrm{a}}=5.6 \times 10^{-10} ; \mathrm{K}_{\mathrm{b}}=3.6 \times 10^{-7}$

Amphiprotic Anions

- HCO_{3}^{-}
- $\mathrm{K}_{\mathrm{a}}=4.7 \times 10^{-11}$
- $K_{b}=2.3 \times 10^{-8}$
- Because $\mathrm{K}_{\mathrm{b}}>\mathrm{K}_{\mathrm{a}}$, a solution of NaHCO_{3} will be basic

Figure 13.9: Flowchart for Acid-Base Properties of Salts

Example 13.12

Example 13.12, (Cont'd)

(a) cation: $\mathrm{Zn}^{\mathbf{3}}{ }^{\text {+ }}$ anioe: $\mathrm{NO}_{3}{ }^{-}$ $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{7}$ (b) cation: K^{+} anion: $\mathrm{ClO}_{4}{ }^{-}$ KCO_{4} (c) cation: $\mathrm{Na}{ }^{*}$ anion: $\mathrm{PO}_{4}{ }^{-}$ $\mathrm{Na}_{3} \mathrm{PO}_{4}$ (d) cation: $\mathrm{NH}_{4}{ }^{+}$ anion: F^{-} $\mathrm{NH}_{4} \mathrm{~F}$ (e) cation: Na^{+} anion: $\mathrm{HCO}_{3}{ }^{-}$ NaHCO_{3}

Lewis Acids

- The concept of a Lewis acid extends the acid-base model
- The Lewis model greatly expands the number of species considered to be acids
- For example, metal cations are not BrønstedLowry acids but are Lewis acids

Extending the Concept of Acids and Bases

- The Lewis Model
- A Lewis base donates a pair of electrons
- A Lewis acid accepts a pair of electrons

Lewis Bases

- The concept of a Lewis base does not structurally differ from that of a Brønsted-Lowry base
- For a species to accept a proton, it must contain an atom that possesses a lone pair
- Lewis bases are also Brønsted-Lowry bases

Table 13.6

Key Concepts

1. Classify a substance as a Brønsted-Lowry acid or base and write the net ionic equation to support the classification
2. Given $\left[\mathrm{H}^{+}\right],\left[\mathrm{OH}^{-}\right], \mathrm{pH}$ or pOH , calculate the three other quantities
3. Given the pH and original concentration of a weak acid, calculate K_{a}
4. Given the K_{a} and original concentration of a weak acid, calculate $\left[\mathrm{H}^{+}\right]$
5. Given the K_{b} and original concentration of a weak base, calculate $\left[\mathrm{OH}^{-}\right]$

Key Concepts, (Cont'd)
6. Given K_{a} for a weak acid, calculate K_{b} for its conjugate base (or vice-versa).
7. Predict whether a salt will be acidic, basic or neutral.
8. Understand the similarities and differences between Lewis and Brønsted-Lowry acids and bases

