
$\therefore \begin{gathered}\text { BROOKS } / \text { COLE } \\ \text { CENGAGt leaning }\end{gathered}$
William L Masterton
Cecile N. Hurley
Edward J. Neth
cenagae.com/chemistry/masterton

Chapter 14

Equilibria in Acid-Base Solutions

Edward J. Neth • University of Connecticut

Outline

1. Buffers
2. Acid-Base Indicators
3. Acid-Base Titrations

Equilibria in Solution

- In Chapter 13, we considered single acid or base equilibria in solution
- The next step is to consider a solution where multiple equilibria are concerned
- Three major concerns
- Solution of a weak acid and its conjugate base (or vice-versa), called a buffer
- Acid-base indicators
- Solutions of acids and bases used in titrations

Strategy

- In any problem involving multiple equilibria
- Identify the key reactions
- Single out one equilibrium and write the reaction and the equilibrium expression
- Always identify one unknown for which to solve

Buffers

- Any solution containing appreciable amounts of both a weak acid and its conjugate base
- Is highly resistant to changes in pH brought about by the addition of a strong acid or base
- Has a pH close to the pK_{a} of the weak acid
- Such a solution is called a buffer

Preparation of a Buffer

- We can prepare a buffer by mixing
- A weak acid, HB
- The conjugate base, B^{-}, as a sodium salt, NaB
- Recall that Na^{+}is a spectator ion so it does not affect pH
- HB reacts with OH^{-}:
- $\mathrm{HB}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightleftharpoons \mathrm{B}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}$
- B^{-}reacts with H^{+}:
- $\mathrm{B}^{-}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq}) \rightleftharpoons \mathrm{HB}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}$

Buffer Reactions

- The (buffer + acid) and (buffer + base) reactions both demonstrate very large equilibrium constants, and go nearly to completion
- Note that
- The strong base is converted to a weak one by the buffer
- The strong acid is converted to a weak one by the buffer
- In this way, a buffer resists large pH changes

Working with Buffers

1. We can determine the pH of a buffer made by mixing a weak acid with its conjugate base
2. We can determine an appropriate buffer system (i.e., combination of acid/base) to maintain a desired pH
3. We can determine the small change in pH of a buffer when a strong acid or base is added to it
4. We can determine the buffer capacity, i.e., the quantitative ability of the buffer to absorb H^{+}or OH^{-} ions

Determining $\left[\mathrm{H}^{+}\right]$in a Buffer System

- The equations that govern a buffer pH are the same as we have seen in Chapter 13: i.e., they are the weak acid or weak base ionization equations
- The equilibrium constants used are the same K_{a} and K_{b} constants that we used in Chapter 13 as well

Determining $\left[\mathrm{H}^{+}\right]$in a Buffer System, (Cont'd)

- $\mathrm{HB}(\mathrm{aq}) \leftrightarrows \mathrm{H}+(\mathrm{aq})+\mathrm{B}-(\mathrm{aq})$

$$
K_{a}=\frac{\left[H^{+}\right]\left[B^{-}\right]}{[H B]}
$$

$$
\left[H^{+}\right]=K_{a} \frac{\left[B^{-}\right]}{[H B]}
$$

$$
p H=p K_{a}+\log \frac{\left[B^{-}\right]}{[H B]}
$$

- The last equation is called the Henderson-Hasselbalch equation

Notes on the Henderson-Hasselbalch Equation

1. You may always assume that equilibrium is established without appreciably changing the original concentrations of HB or B^{-}
2. Because HB and B^{-}are present in the same solution, the ratio of their concentrations is also their mole ratio

- Can work directly with moles, without converting to concentration for each
\square

Figure 14.1: Effect of a Buffer

Figure 14.2: Buffer Applications

Example 14.1

Lactic acid, $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{3}$, is a weak organic acid present in both sour milk and buttermilk. It is also a product of carbohydrate
 - 1.00 mol of sodium lactate and L .00 mol of lactic acid in enough water to form 550.0 mL . of solution.
(1.00 mol of sodium lactate and 1.00 mol of lactic acid in enough water to form 550.0 mL . of solution.
(5) 34.6 g of Nalac dissolved in 550.0 mL of a 1.20 M aqueous solution of HLac . Assume no volume change after addition (3) 34.6 gofN
of Nalac.)

Information given

Asked for: volume of solution (550.0 mL)
$\quad\left|\mathrm{H}^{+}\right|$and pH of the buffer

1. Substitute into Equation 14.2 to obtain $\left[\mathrm{H}^{+}\right]$.
$\left[\mathrm{H}^{+}\right]=K_{\mathrm{a}} \times \frac{m_{\mathrm{ag}}}{n_{\mathrm{B}}}$
2. Find $\mathrm{pH}: \mathrm{pH}=-\log _{a l}\left|\mathrm{H}^{+}\right|$

Choosing a Buffer System

- From the Henderson-Hasselbalch equation, we can see:

$$
p H=p K_{a}+\log \frac{\left[B^{-}\right]}{[H B]}
$$

- The pH of a buffer depends on two factors:
- K_{a} for the acid: if HB and B^{-}are present in nearly equal amounts, $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}$
- The ratio of the concentration or amounts of HB and B - Adding more base than $1: 1$ will make the buffer more basic

Table 14.1: Buffer Systems for Various pH Values

Example 14.1, (Cont'd)

Example 14.2

Example 14.2, (Cont'd)

Alternate Route to Buffers

- Partial neutralization of a weak acid by a strong base will produce a buffer
- Partial neutralization of a weak base by a strong acid will also produce a buffer
- $\mathrm{H}^{+}(\mathrm{aq})+\mathrm{NH}_{3}(\mathrm{aq}) \rightleftharpoons \mathrm{NH}_{4}^{+}(\mathrm{aq})$
- Adding 0.18 mol HCl to $0.28 \mathrm{~mol}_{\mathrm{NH}_{3}}$ will produce $0.18 \mathrm{~mol} \mathrm{NH}_{4}{ }^{+}$and leave $0.10 \mathrm{~mol} \mathrm{NH}_{3}$ unreacted
- There must be both species present in order to produce a buffer

Example 14.3

Example 14.3, (Cont'd)

(b)		
ANALYSIS		
Information given:	$\begin{aligned} & \text { from part }(a) \text { : reaction }\left(\text { HAc }(a q)+\mathrm{OH}^{-}(a q) \longrightarrow \mathrm{Ac}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}\right) \\ & \mathrm{NaOH:} V(25.00 \mathrm{~mL}): M(0.100) \\ & \mathrm{HAc} V(35.00 \mathrm{~mL}): M(0.125) \end{aligned}$	
Information implied.	K, for HAc	
Asked for:	Is the solution a buffer?	
Strategy		
1. Find mol OH^{-}. 2. Find mol HAc. 3. Make a table as in part (a). 4. Check for the presence of the weak acid (HAc) and its conjugate base (Ac^{-}) after reaction is complete.		continuet

Example 14.3, (Cont'd)

Example 14.3, (Cont'd)

Effect of Added H^{+}or OH^{-}on Buffer Systems

- Fundamental equations
- Acid
- $\mathrm{H}^{+}(\mathrm{aq})+\mathrm{B}^{-}(\mathrm{aq}) \rightleftharpoons \mathrm{HB}(\mathrm{aq})$
- Base
- $\mathrm{OH}^{-}(\mathrm{aq})+\mathrm{HB}(\mathrm{aq}) \rightleftharpoons \mathrm{B}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}$

Example 14.4, (Cont'd)

STRATEGY

1. Write the reaction between the strong acid H^{+}and the conjugate base, Lac-
2. Adding H^{+}uses up the conjugate base in a $1: 1$ stoichiometric ratio.
mol Lac^{-}after addition $=$mol Lac - mol H$^{+}$
3. Adding H^{+}produces more weak acid in a $1: 1$ stoichiometric ratio.
mol HLac after addition $=$ mol $\mathrm{HLac}+$ mol H^{+}
4. Substitute into Equation 14.2 to find $\left[\mathrm{H}^{*}\right]$ and pH .

1. Reaction	$\text { Lac- }^{-}(a q)+\mathrm{H}^{+}(a q) \longrightarrow \mathrm{HLac}(a q)$
2. mol Lac- after H^{+}addition	mol lac- $=1.00-0.08=0.92 \mathrm{~mol}$
3. mol HLac after H^{*} addition	mol HLac $=1.00+0.08=1.08 \mathrm{~mol}$
4. $\left[\mathrm{H}^{+}\right]: \mathrm{pH}$	$\begin{aligned} & {\left[\mathrm{H}^{*} \left\lvert\,=1.4 \times 10^{-4} \times \frac{1.08}{0.92}=1.6 \times 10^{-4}\right.\right.} \\ & \mathrm{pH}=-\log _{n}\left(1.6 \times 10^{-4}\right)=3.80 \end{aligned}$

2. mol Lac- after H^{*} addition
3. mol HLac after H^{*} addition
4. $\left|\mathrm{H}^{+}\right| ; \mathrm{pH}$

Example 14.4, (Cont'd)

Example 14.4

Example 14.4, (Cont'd)

Adding a strong acid to a buffer

- increases the number of moles of the weak acid.
- decreases the number of moles of the conjugate base.
. dectrases the pH by a small amount. (In this case: $3.85 \longrightarrow 3.80$)

2. Adding a strong base to a buffer

- increases the number of moles of the conjugate base.
. decreases the number of moles of the weak acid.
- increases the pH by a small amount. (In this case $3.85 \longrightarrow 3.92$)

3. One cannot add an unlimited amount of strong acid or base. When the weak acid or its conjugate base becomes the lim iting reactant, then (the buffer is destroyed and only H^{*} and the weak acid are present (if H^{+}is added) or OH^{-}and the
weak base are left (if $\mathrm{OH} \mathrm{H}^{-}$is added).

Buffer Function

- Example 14.4 illustrates how a buffer functions:
- Strong acid is converted to weak acid
- Strong base is converted to weak base

Buffer Illustration with Acid-Base Indicator

Figure 14.3

Buffer Range

- The buffer range is the pH range over which the buffer is effective
- Buffer range is related to the ratio of HB / B
- The further the ratio is from $1: 1$, the less effective the buffer is and the shorter the buffer range

Buffer Capacity

- The buffer capacity to react with acid or base is limited
- Eventually, all the HB reacts with OH^{-}
- Eventually, all the B^{-}reacts with H^{+}
- We can plot the pH on the y-axis and the number of moles of H^{+}and OH^{-}added on the X -axis to prepare a buffer capacity plot
- Point A is the native buffer pH
- Point B is the effective limit of base buffering
- Point C is the effective limit of acid buffering

Example 14.5

Acid-Base Indicators

- An acid-base indicator is useful in determining the equivalence point in a titration
- The indicator changes color to signal the point at which neutralization has occurred (the equivalence point)
- The point at which the indicator changes color is called the endpoint

Indicators as Weak Organic Acids

- Indicators are weak organic acids with a special property
- They are one color in acid and ...
- Another color in base
- We can write the formula for an indicator as HIn
- Equilibrium for HIn is the same as for any other weak acid
- $\mathrm{HIn}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{In}^{-}(\mathrm{aq})$

$$
K_{a}=\frac{\left[H^{+}\right]\left[/ n^{-}\right]}{[H I n]}
$$

Which Color?

- The color of the indicator is controlled by $\left[\mathrm{H}^{+}\right]$, which determines $[\mathrm{HIn}] /[\mathrm{In}]$
- If $\frac{[\mathrm{HIn}]}{\left[\mathrm{In}^{-}\right]} \geq 10 \quad$ the indicator will be the acid color
- If $\frac{[\mathrm{HIn}]}{\left[\mathrm{In}^{-}\right]} \leq 0.10$ the indicator will be the base color
- If $[\mathrm{HIn}]$ the indicator will be an
$\frac{[\mathrm{HIn}]}{\left[\mathrm{In}^{-}\right]} \approx 1 \quad \begin{array}{r}\text { the indicator will be an } \\ \text { intermediate color }\end{array}$

Figure 14.4

Table 14.2

TABLE 14.2 Colors and End Points of Indicators

	Color $[\mathrm{HIn}]$	Color $\left[\mathrm{ln}^{-}\right]$	K_{2}	pH at End Point
Methyl red	Red	Yellow	1×10^{-5}	5
Bromthymol blue	Yellow	Blue	1×10^{-7}	7
Phenolphthalein	Colorless	Pink	1×10^{-9}	9

Summary of Properties of an Indicator

- Two factors control the color of the indicator and the pH at which it will change color
- The ratio of [HIn]/[In-]
- The K_{a} of the indicator
- A color change occurs when $\left[\mathrm{H}^{+}\right] \approx \mathrm{pK}_{\mathrm{a}}$ (or, expressed in logarithmic terms, $\mathrm{pH} \approx \mathrm{pK}_{\mathrm{a}}$)

Bromthymol Blue

- Yellow in acid
- Blue in base
- $\mathrm{K}_{\mathrm{a}}=1 \times 10^{-7}$
- As the pH increases,
- At pH 6, the indicator is yellow
- Between pH 6 and 7, the color changes to green
- At pH 7, we have a green color
- Between pH 7 and 8, the green changes to blue
- At pH 8 (and above) the indicator is blue

Figure 14.5

Features of a Strong Acid-Strong Base Titration

- The pH starts out very low
- There is a gradual rise in pH as base is added
- Near the equivalence point, the pH rises sharply
- Most of the acid has been neutralized
- After the equivalence point, the pH rises slowly as more base is added to the titration mixture
- The K for this reaction is $1 / \mathrm{K}_{\mathrm{w}}$ or 1×10^{14}
- The pH at the equivalence point is 7.00
- Any acid-base indicator can be used for a strong acid-strong base titration

Example 14.7, (Cont'd)

Example 14.7, (Cont'd)

Example 14.7, (Cont'd)

Example 14.7, (Cont'd)

Weak Acid-Strong Base Titration

- Consider the titration of acetic acid with sodium hydroxide
- $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightleftharpoons \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}$
- K is the inverse of the K_{b} for $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}$
- $\mathrm{K}=1 / 5.6 \times 10^{-10}=1.8 \times 10^{9}$
- K is very large, but not as large as that for a strong acid-strong base titration

Figure 14.7: Molecular View of a Titration

Notes on Acetic Acid-Sodium Hydroxide Titration

- The pH starts out above 2; the titration begins with a weak acid
- The pH rises slowly until the equivalence point is approached, then rises rapidly
- The region between the beginning and the equivalence point has $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \rightleftharpoons \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$, which is a buffer solution
- At the equivalence point, we have a solution of a weak base $\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right)$, with a pH greater than 7 as a result
- After the equivalence point, the pH rises slowly, as a strong base is being added to a weak one

Figure 14.6

Example 14.8

Example 14.8, (Cont'd)

Weak Acid- Strong Base Indicator Selection

- In choosing an indicator for the acetic acid-sodium hydroxide titration, we need one that will change color at basic pH
- Because the product of the titration is a weak base, the equivalence point will be basic
- Phenolphthalein, with endpoint $\mathrm{pH}=9$, is a good choice for this titration

Strong Acid-Weak Base Titration

- Hydrochloric acid with ammonia
- $\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{NH}_{3}(\mathrm{aq}) \rightleftharpoons \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}$
- Simplified reaction:
- $\mathrm{H}^{+}(\mathrm{aq})+\mathrm{NH}_{3}(\mathrm{aq}) \rightleftharpoons \mathrm{NH}_{4}^{+}(\mathrm{aq})$
- Note that K is $1 / \mathrm{K}_{\mathrm{a}}$ for $\mathrm{NH}_{4}{ }^{+}$
- $K=1 / 5.6 \times 10^{-10}=1.8 \times 10^{9}$
- K is large; it is of the same magnitude as the K for a weak acid-strong base titration
-

Figure 14.8

Notes on $\mathrm{HCl}-\mathrm{NH}_{3}$ Titration

- The original pH is that of the weak base, which is approximately 12
- The pH falls slowly with the addition of the acid
- Again, the addition of the acid to the weak base produces a buffer solution
- Near the equivalence point, the buffer is exhausted and the pH falls rapidly
- After the equivalence point, the pH falls slowly, as strong acid is being added to weak acid

Strong Acid-Weak Base Indicator Selection

- The pH at the equivalence point of a strong acidweak base titration is acidic
- The indicator must change color at an acidic pH
- For this titration, methyl red is a suitable choice
- Color change takes place at a pH of approximately 5

Titrating Diprotic Acids

- Diprotic acids can be titrated similarly to monoprotic acids
- Because there are two ionizable hydrogen ions, there are two equivalence points
- Both equivalence points appear on the titration curve

Figure 14.9

Summary Notes on Acid-Base Titrations

- The equations that describe the reactions differ
- Strong acids and strong bases are H^{+}and OH^{-}in water
- The equilibrium constants (K) for the reactions are very large, indicating that the reactions go essentially to completion
- The pH at the equivalence point is controlled by the species present
- Strong acid-strong base: $\mathrm{pH}=7$; neutral salt in water
- Weak acid-strong base: $\mathrm{pH}>7$; weak base in water
- Strong acid-weak base: $\mathrm{pH}<7$; weak acid in water

Example 14.9

EXAMPLE 149
 Consider the titration of formic acid. HCHO_{2}, with barium hydroxide.

(a) Write a balanced net ionic equation for the reaction.
(b) Calculate K for the reaction.
(c) Is the solution at the equivalence point acidic, basic, or neutral?
(d) What would be an appropriate indicator for the titration?

SOLUTION

(a) Reaction	$\mathrm{HCH}_{2} \mathrm{O}(a q)+\mathrm{OH}^{-}(a q) \longrightarrow \mathrm{CHO}_{2}^{-}($aq) $)+\mathrm{H}_{2} \mathrm{O}$
(b) K	$\begin{aligned} & \mathrm{CHO}_{2}^{-}-(a q)+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HCH}_{3} \mathrm{O}(\text { aq })+\mathrm{OH}^{-}\left(\text {aq) } K_{s}\right. \\ & K=1 / K_{\mathrm{s}}=1 / 53 \times 10^{-1}=1.9 \times 10^{\mathrm{n}} \end{aligned}$
(c) Acidic, basic or neutral?	basic, due to the presence of $\mathrm{CHO}_{2}{ }^{-}$
(d) Indicator	phenolphthalein

Key Concepts

1. Calculate the pH of a buffer as initially prepared.
2. Choose a buffer for a specified pH .
3. Determine whether a combination of a strong acid/base and its salt is a buffer (or not).
4. Calculate the pH of a buffer after the addition of strong acid or base.
5. Determine the color of an indicator at a specific pH , given its K_{a}.
6. Calculate the pH during an acid-base titration.
7. Choose the proper indicator for a titration.
8. Calculate K for an acid-base reaction.
