

Strategy

- · In any problem involving multiple equilibria
 - · Identify the key reactions
 - Single out **one** equilibrium and write the reaction and the equilibrium expression
 - Always identify one unknown for which to solve

Outline

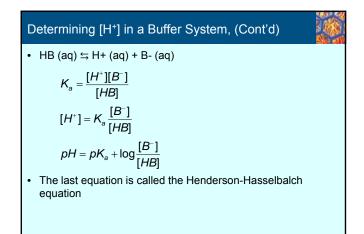
- 1. Buffers
- 2. Acid-Base Indicators
- 3. Acid-Base Titrations

Buffers Any solution containing appreciable amounts of both a weak acid and its conjugate base

- Is highly resistant to changes in pH brought about by the addition of a strong acid or base
- Has a pH close to the pK_a of the weak acid
- Such a solution is called a buffer

Equilibria in Solution

- In Chapter 13, we considered single acid or base equilibria in solution
 - The next step is to consider a solution where multiple equilibria are concerned
- Three major concerns
 - Solution of a weak acid and its conjugate base (or *vice-versa*), called a buffer
 - Acid-base indicators
 - · Solutions of acids and bases used in titrations


Preparation of a Buffer

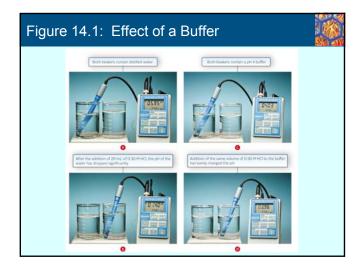
- We can prepare a buffer by mixing
 - · A weak acid, HB
 - The conjugate base, B⁻, as a sodium salt, NaB
 Recall that Na⁺ is a spectator ion so it does not affect pH
- HB reacts with OH-:
 - HB (aq) + OH⁻ (aq) \rightleftharpoons B⁻ (aq) + H₂O
- B⁻ reacts with H⁺ :
 - $B^{-}(aq) + H^{+}(aq) \rightleftharpoons HB(aq) + H_{2}O$

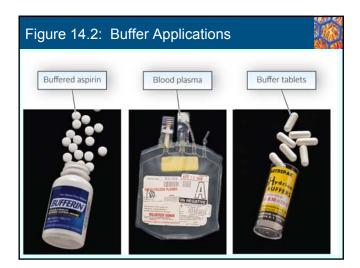
Buffer Reactions

 The (buffer + acid) and (buffer + base) reactions both demonstrate very large equilibrium constants, and go nearly to completion

- · Note that
 - The strong base is converted to a weak one by the buffer
 - The strong acid is converted to a weak one by the buffer
 - In this way, a buffer resists large pH changes

Working with Buffers


- 1. We can determine the pH of a buffer made by mixing a weak acid with its conjugate base
- 2. We can determine an appropriate *buffer system* (i.e., combination of acid/base) to maintain a desired pH
- 3. We can determine the small change in pH of a buffer when a strong acid or base is added to it
- We can determine the *buffer capacity*, i.e., the quantitative ability of the buffer to absorb H⁺ or OH⁻ ions

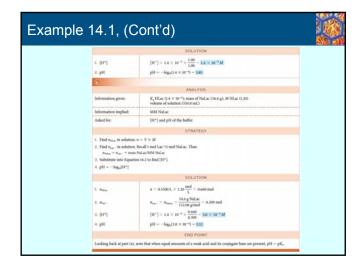

Notes on the Henderson-Hasselbalch Equation

- 1. You may always assume that equilibrium is established without appreciably changing the original concentrations of HB or B-
- 2. Because HB and B⁻ are present in the same solution, the ratio of their concentrations is also their mole ratio
 - Can work directly with moles, without converting to concentration for each

Determining [H⁺] in a Buffer System

- The equations that govern a buffer pH are the same as we have seen in Chapter 13: i.e., they are the weak acid or weak base ionization equations
- The equilibrium constants used are the same $K_{\rm a}$ and $K_{\rm b}$ constants that we used in Chapter 13 as well

Choosing a Buffer System


• From the Henderson-Hasselbalch equation, we can see:

$$pH = pK_a + \log\frac{[B^-]}{[HB]}$$

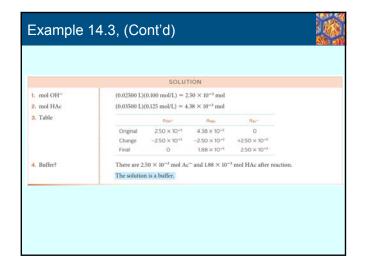
- The pH of a buffer depends on two factors:
 - + K_a for the acid: if HB and B- are present in nearly equal amounts, pH = pK_a
 - The ratio of the concentration or amounts of HB and B⁻
 Adding more base than 1:1 will make the buffer more basic

Example 1	4.1
EXAMPLE 14.1 GRAI	DED
metabolism and is found i	reak organic acid present in both sour milk and buttermilk. It is also a product of carbohydrate in the blood after vigorous muscular acivity. A buffer is prepared by dissolving lactic acid, HLac lium lactate, NacAHAO, NaLac. Calculate 14 ^H and the PH of the buffer if it is made of
	ctate and 1.00 mol of lactic acid in enough water to form 550.0 mL of solution.
 34.6 g of NaLac dissol of NaLac.) 	ved in 550.0 mL of a 1.20 <i>M</i> aqueous solution of HLac. (Assume no volume change after addition
	ANALYSIS
Information given:	$K_{\rm a}$ HLac (1.4 \times 10 $^{-6}); n_{\rm HLac}$ (1.00 mol); $n_{\rm Lac}-$ (1.00 mol) volume of solution (550.0 mL)
	[H*] and pH of the buffer
Asked for:	In Tana prior me ouner
Asked for:	STRATEGY

ABLE 14.1 B	uffer Systems at Different pH Val	ues		
	Buf	fer System		
Desired pH	Weak Acid	Weak Base	K _a (Weak Acid)	pK,
4	Lactic acid (HLac)	Lactate ion (Lac)	1.4×10^{-4}	3.85
5	Acetic acid (HC ₂ H ₃ O ₂)	Acetate ion (C ₂ H ₃ O ₂ -)	1.8 × 10-5	4.74
6	Carbonic acid (H ₂ CO ₃)	Hydrogen carbonate ion (HCO ₃ ~)	4.4×10^{-7}	6.36
7	Dihydrogen phosphate ion (H ₂ PO ₄ ⁻)	Hydrogen phosphate ion (HPO $_{4}{}^{\mathbb{Z}^{n}}$)	6.2 × 10 ⁻⁸	7.21
8	Hypochlorous acid (HCIO)	Hypochlorite ion (CIO*)	2.8 × 10 ⁻⁸	7.55
9	Ammonium ion (NH4*)	Ammonia (NH ₃)	5.6 × 10 ⁻¹⁰	9.25
10	Hydrogen carbonate ion (HCO3")	Carbonate ion (CO32-)	4.7 × 10 ⁻¹¹	10.32

xa	mple 14.2		
	EXAMPLE 14.2 GRAD	DED	
	Suppose you need to prepa	re a buffer with a pH of 9.00.	
	Which of the buffer system	stems in Table 14.1 would you choose?	
		tio of the concentration of weak acid, HB, to its conjugate base, B-?	
		(B" should be added to 245 mL of 0.880 M HB to give a pH of 9.00?	
	()		
		STRATEGY AND SOLUTION	
	Check the K ₄ values in Tab NH ₄ */NH ₅ system with a p	le 14.1. Find the buffer system with a $pK_{\rm a}$ value closest to 9.00. The clear choice is the $K_{\rm a}$ of 9.25.	
	•		
		ANALYSIS	
	Information given:	pH (9.00); from part (a): buffer system (NH ₆ */NH ₅)	
	Information implied:	K _a of NH ₄ *	
	Asked for:	[NH ₄ *]/[NH ₃]	
		STRATEGY	
	 Find [H*]. Substitute into Equation 	14.1 where [HB] is [NH_6*] and B $^\circ$ is [NH_6].	
		SOLUTION	
	t. [H*]	$\rm pH = -log_m9.00 = 1.0 \times 10^{-6}\rm M$	
	2. NH4* NH4	$[H^*] = K_* \times \frac{NH_*}{NH_*} \longrightarrow \frac{NH_*}{NH_*} = \frac{[H^*]}{K_*} = \frac{1.0 \times 10^{-8}}{5.6 \times 10^{-10}} = 1.8$	

Example 1	4.2, (Cont'd)	6
		and an
C		
	ANALYSIS	
Information given:	from part (a): buffer system (NH_4^+/NH_3) from part (b): $[H^+]$ (1.0 × 10 ⁻⁹ M): NH ₄ ⁺ /NH ₃ (1.8) NH ₄ ⁺ solution: V (0.245 L); M (0.880)	
Information implied:	molar mass of NH3	
Asked for:	mass of NH3 required to prepare a buffer with pH 9.0.	continues
Asked for:	mass of NH3 required to prepare a buffer with pH 9.0.	continu


EXAMPLE 14.3 GRA	DED				
The food industry uses the tic acid, HC ₂ H ₂ O ₂ (HAc).					
0 0.300 mol NaOH and			manness address of a	on manweld southor	in many a countr.
0 25.00 ml. of 0.100 M			H,O1		
G 5.00 g of NaOH and	50.0 ml. of 0.500 M	HC ₂ H ₁ O ₂			
0					
		ANAL	Y\$15		
Information given:	mol NaOH	= mol OH~ (0.3	00); mol HAc (0.5	(00)	
Information implied:	K, for HAC	Table 13.2)			
Asked for:	Is the solution	on a buffer?			
		STRA	TEGY		
 Write the reaction for HB(ag) + OH*(ag) - Fill in a table like the s Recall that for a solution 	$\rightarrow B^{-}(aq) + H_{2}O$ ne shown in the pro-	eding discussion	r.	ad its conjugate base.	
		SOLU	TION		
1. Reaction	HAc(eq) +	$OH^{-}(aq) \longrightarrow P$	02H+(pa)-34		
2. Table		Poar-	Pres	Part	
	Card along		0.500	0	
	Change	0.300	-0.300	+0.300	

Example 1	4.2, (Cont'd)
	STRATEGY
	solution, $[NH_4^*]/[NH_3] = mol NH_4^*/mol NH_3 = 1.8$. Substitute mol NH $_4^*$ and find mol NH $_5$ -required using its molar mass.
	SOLUTION
 mol NH₄+ mol NH₃ mass NH₃ 	n = (0.245 L)(0.880 mol/L) = 0.216 mol $\frac{0.216}{\text{mol NH}_3} = 1.8 \longrightarrow \text{mol NH}_3 = 0.12$ mass = (0.12 mol)(17.03 g/mol) = 2.0 g

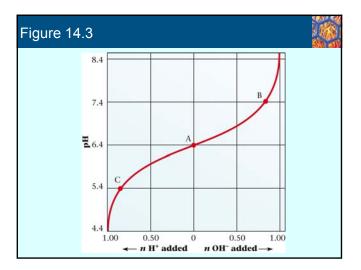
Example 1	4.3, (Conťd)	
b		
	ANALYSIS	
Information given:	from part (a): reaction (HAc(aq) + OH"(aq) \longrightarrow Ac"(aq) + H ₂ O) NaOH: V (25.00 mL); M (0.100) HAc: V (35.00 mL); M (0.125)	
Information implied:	K _s for HAc	
Asked for:	Is the solution a buffer?	
	STRATEGY	
 Find mol OH⁻. Find mol HAc. Make a table as in part ((a). (a) the weak acid (HAc) and its conjugate base (Ac [−]) after reaction is complete.	continued

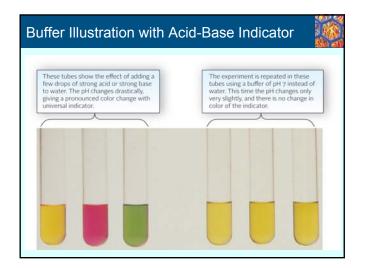
Alternate Route to Buffers

- Partial neutralization of a weak acid by a strong base will produce a buffer
- Partial neutralization of a weak base by a strong acid will also produce a buffer
 - H^+ (aq) + NH_3 (aq) $\rightleftharpoons NH_4^+$ (aq)
 - Adding 0.18 mol HCl to 0.28 mol NH $_3$ will produce 0.18 mol NH $_4^+$ and leave 0.10 mol NH $_3$ unreacted
 - There must be both species present in order to produce a buffer

nple 14.3, (Cont	d)			
©	56 - C				
		ANAL	VSIS .		
Information given:	NaOH: mas			+ Ac*(aq) + H ₂ O)	
Information implied:	K, for HAc				
Asked for:	Is the solution	n a buffer!			
		STRA	TEGY		
 Find mol HAc. Make a table as in part Check for the presence 		Ac) and its conje	ugate base (Ac*) a	fter reaction is complete.	
		SOLU	TION		
1. mol OH* 2. mol HAc		= <u>5.00 g</u> <u>40.0 g/mol</u> = <u>500 mol/L</u> = 0	0.125 mol = mol 9 0750 mol	OH-	
3. Table		Roe*	Peac	Au-	
	Original Change Final	0.125 -0.0750 0.050	0.0750 -0.0750 0	0 +0.0750 0.0750	
4. Buffer!	There are 0.	0750 mol Ac ⁻ at	sd no mol HAc aff	er reaction. The solution is not a buffer	6
		END P	OINT		

Example 14.4,	(Cont'd)	
	STRATEGY	
 Write the reaction between the sh Adding H* uses up the conjugate mol Lac⁻ after addition = mol La Adding H* produces more weak: mol HLac after addition = mol H Substitute into Equation 14.2 to fi 	c" – mol H+ acid in a 1:1 stoichiometric ratio. Lac + mol H+	
	SOLUTION	
 Reaction mol Lac⁻ after H* addition mol HLac after H* addition [H*]; pH 	$Lac^{-}(aq) + H^{+}(aq) \longrightarrow HLac (aq)$ mol Lac ⁻ = 1.00 - 0.08 = 0.92 mol mol HLac = 1.00 + 0.08 = 1.08 mol $[H^{+}] = 1.4 \times 10^{-4} \times \frac{1.08}{0.92} = 1.6 \times 10^{-4}$ pH = $-\log_{10}(1.6 \times 10^{-5}) = 3.80$	

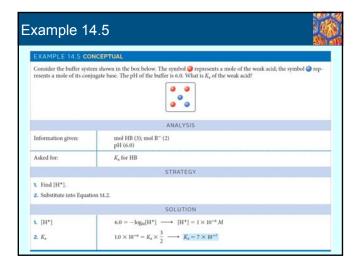

• Fundamental equations • Acid • Acid • H ⁺ (aq) + B ⁻ (aq) \rightleftharpoons HB (aq) • Base • OH ⁻ (aq) + HB (aq) \rightleftharpoons B ⁻ (aq) + H ₂ O • CH ⁺ (aq) + HB (aq) \rightleftharpoons B ⁻ (aq) + H ₂ O • CH ⁺ (aq) + HB (aq) \rightleftharpoons B ⁻ (aq) + H ₂ O • CH ⁺ (aq) + HB (aq) \rightleftharpoons B ⁻ (aq) + H ₂ O • CH ⁺ (aq) + HB (aq) \rightleftharpoons B ⁻ (aq) + H ₂ O • CH ⁺ (aq) + HB (aq) \rightleftharpoons B ⁻ (aq) + H ₂ O • CH ⁺ (aq) + HB (aq) \rightleftharpoons B ⁻ (aq) + H ₂ O • CH ⁺ (aq) + HB (aq) \rightleftharpoons B ⁻ (aq) + H ₂ O • CH ⁺ (aq) + HB (aq) \rightleftharpoons B ⁻ (aq) + H ₂ O • CH ⁺ (aq) + HB (aq) \rightleftharpoons B ⁻ (aq) + H ₂ O	Effect of Added H ⁺ or OH ⁻ on Buffer Systems	E	Example 14.4, (C	Cont'd)
• H ⁺ (aq) + B ⁻ (aq) \rightleftharpoons HB (aq) • Base • OH ⁻ (aq) + HB (aq) \rightleftharpoons B ⁻ (aq) + H ₂ O • UH ⁻ (aq) + HB (aq) \rightleftharpoons B ⁻ (aq) + H ₂ O • OH ⁻ (aq) + HB (aq) \rightleftharpoons B ⁻ (aq) + H ₂ O • OH ⁻ (aq) + HB (aq) \rightleftharpoons B ⁻ (aq) + H ₂ O • OH ⁻ (aq) + HB (aq) \rightleftharpoons B ⁻ (aq) + H ₂ O • OH ⁻ (aq) + HB (aq) \rightleftharpoons B ⁻ (aq) + H ₂ O • OH ⁻ (aq) + HB (aq) \rightleftharpoons B ⁻ (aq) + H ₂ O	-			ANALYSIS mol HLac (1.00); mol Lac" (1.00); mol NaOH = mol OH" (0.08)
• Base • OH ⁻ (aq) + HB (aq) \Rightarrow B ⁻ (aq) + H ₂ O • OH ⁻ (aq) + HB (aq) \Rightarrow B ⁻ (aq) + H ₂ O • OH ⁻ (aq) + HB (aq) \Rightarrow B ⁻ (aq) + H ₂ O • Write the reaction between the strong base OH ⁻ and the weak acid, HLac. • Adding OH ⁺ produces more conjugate base in a L1 stoichiometric ratio. mol Hac ⁻ after + mol OH ⁻ • Adding OH ⁺ produces more conjugate base in a L1 stoichiometric ratio. mol Hac ⁻ after + mol OH ⁻ • Substitute into Equation 14.2 to find [H ⁺] and pH. SOLUTION				pH of the buffer (3.85)
• OH ⁻ (aq) + HB (aq) \Rightarrow B ⁻ (aq) + H ₂ O • Write the reaction between the strong base OH ⁻ and the weak acid. Hate, 2. Adding OH ⁻ uses up the weak acid in a 1:1 stoichiometric ratio. mel Hace after addition = mel Hace - mel OH ⁻ 2. Adding OH ⁻ produces more computer base in a 1:1 stoichiometric ratio. mel Lac ⁻ after addition = mel Lac ⁻ + mel OH ⁻ 4. Substitute into Equation 14.2 to find [H ⁺] and pH. SOLUTION			Asked for:	pH of the buffer after the addition of strong base
2. Adding OH ⁻ uses up the weak acid in a 1:1 stochbiometric ratio. mol HLac after addition = mol HLac - mol OH ⁺ 3. Adding OH ⁻ produces more couplinger base in a 1:1 stochbiometric ratio. mol Lac ⁺ after addition = mol Lac ⁺ + mol OH ⁺ 4. Substitute into Equation 14:2 to find [H ⁺] and pH. SOLUTION	• Base			STRATEGY
	• OH⁻ (aq) + HB (aq) ≓ B⁻ (aq) + H₂O		 Adding OH⁺ uses up the weak aci mol HLac after addition = mol HI Adding OH⁺ produces more conju mol Lac⁻ after addition = mol Lac 	f in a 1:1 stoichiometric ratio. .ac – mol OH ⁺⁻ ugate base in a 1:1 stoichiometric ratio. + mol OH
2. mol HLac after OH" addition mol HLac = 1.00 = 0.08 = 0.92 mol 3. mol Lac" after OH" addition mol Lac" = 1.00 + 0.08 = 1.08 mol 4. $[H^+]; pH$ $[H^+] = 1.4 \times 10^{-4} \times \frac{0.92}{1.08} = 1.2 \times 10^{-4}$ pH = $-\log_{10}(1.2 \times 10^{-1}) = 3.392$			 2. mol HLac after OH⁺ addition 3. mol Lac⁺ after OH⁺ addition 	$\begin{split} HLac(aq) & + OH^{-}(aq) \longrightarrow Lac^{-}(aq) + H_{2}O \\ mol HLac & = 1.00 - 0.08 = 0.92 mol \\ mol Lac^{-} & = 1.00 + 0.08 = 1.08 mol \\ [H^{+}] & = 1.4 \times 10^{-4} \times \frac{0.92}{1.08} = 1.2 \times 10^{-4} \end{split}$


EXAMPLE 14.4		
	bed in Example 14.1, where $n_{HLec} = n_{Lec} = 1.00 \text{ mol} (K_a \text{ HLac} = 1.4 \times 10^{-4})$. 5. Calculate the pH after addition of	You will recall that
-	0.08 mol of NaOH	
a)		
	ANALYSIS	
Information given:	mol HLac (1.00); mol Lac ~ (1.00); mol HCl = mol H^+ (0.08) pH of the buffer (3.85) K_{\star} for HLac (1.4 \times 10^{-4})	
Asked for:	pH of the buffer after the addition of acid	continued

	END POINTS
١.	Adding a strong acid to a buffer
	 increases the number of moles of the weak acid.
	 decreases the number of moles of the conjugate base.
	 decreases the pH by a small amount. (In this case: 3.85 → 3.80)
2.	Adding a strong base to a buffer
	 increases the number of moles of the conjugate base.
	 decreases the number of moles of the weak acid.
	 increases the pH by a small amount. (In this case: 3.85 → 3.92)
3.	One cannot add an unlimited amount of strong acid or base. When the weak acid or its conjugate base becomes the limiting reactant, then the buffer is destroyed and only H^* and the weak acid are present (if H^* is added) or OH^- and the weak base are left (if OH^- is added).

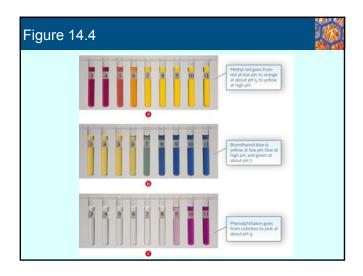
Buffer Function

- Example 14.4 illustrates how a buffer functions:
 - Strong acid is converted to weak acid
 - Strong base is converted to weak base



Buffer Range

- The *buffer range* is the pH range over which the buffer is effective
 - Buffer range is related to the ratio of HB/B-
 - The further the ratio is from 1:1, the less effective the buffer is and the shorter the buffer range


Buffer Capacity

- The *buffer capacity* to react with acid or base is limited
 - Eventually, all the HB reacts with OH-
 - Eventually, all the B⁻ reacts with H⁺
- We can plot the pH on the y-axis and the number of moles of H⁺ and OH⁻ added on the X-axis to prepare a buffer capacity plot
 - Point A is the native buffer pH
 - · Point B is the effective limit of base buffering
 - · Point C is the effective limit of acid buffering

Acid-Base Indicators

- · An acid-base indicator is useful in determining the equivalence point in a titration
 - The indicator changes color to signal the point at which neutralization has occurred (the equivalence point)
 - · The point at which the indicator changes color is called the endpoint

Indicators as Weak Organic Acids

- · Indicators are weak organic acids with a special property
 - They are one color in acid and ...
 - Another color in base
- We can write the formula for an indicator as HIn
- · Equilibrium for HIn is the same as for any other weak acid • Hln (aq) \rightleftharpoons H⁺ (aq) + ln⁻ (aq)

$$K_a = \frac{[H^+][In^-]}{[HIn]}$$

	Color [HIn]	Color [In ⁻]	Ka	pH at End Point
Methyl red	Red	Yellow	1 × 10 ⁻⁵	5
Bromthymol blue	Yellow	Blue	1×10^{-7}	7
Phenolphthalein	Colorless	Pink	1 × 10 ⁻⁹	9

Which Color?

The color of the indicator is controlled by [H⁺], which • determines [HIn]/[In]

[ln⁻]

<u>[HIn]</u> ≈ 1 [In⁻]

• If

• If

the indicator will be the acid color

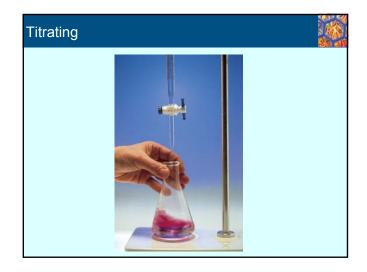
 $\frac{[HIn]}{(H-1)} \le 0.10$ the indicator will be the base color

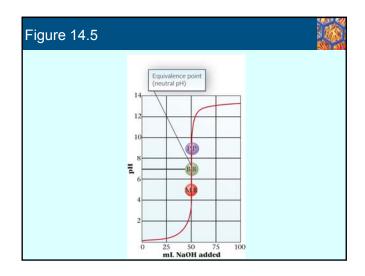
Summary of Properties of an Indicator	
 Two factors control the color of the indicator and pH at which it will change color 	l the
 The ratio of [HIn]/[In⁻] 	
 The K_a of the indicator 	
 A color change occurs when [H⁺] ≈ pK_a (or, 	

expressed in logarithmic terms, $pH \approx pK_a$)

Bromthymol Blue

- Yellow in acid
- Blue in base
- K_a = 1 X 10⁻⁷
- As the pH increases,
 - At pH 6, the indicator is yellow
 - Between pH 6 and 7, the color changes to green
 - At pH 7, we have a green color
 - Between pH 7 and 8, the green changes to blue
 - At pH 8 (and above) the indicator is blue

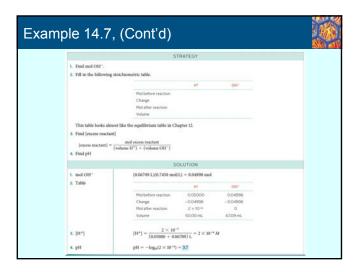

Acid-Base Titrations


- Recall from Chapter 4 that we can analyze an acid (or base) by reacting it with a known quantity of a known concentration of base (or acid)
 - Strong acid-strong base
 - Weak acid-strong base
 - Weak base-strong acid

Example 14	4.6	
EXAMPLE 14.6		
Consider bromthymol blue (a) calculate the ratio [In ⁻ (b) what is the color of the		
	ANALYSIS	
Information given:	K_a for bromthymol blue (1 × 10 ⁻⁷) pH (6.5)	
Information implied:	color of bromthymol blue at different pH values	
Asked for:	 (a) [In⁻]/[HIn] (b) color of bromthymol blue at pH 6.5 	continued

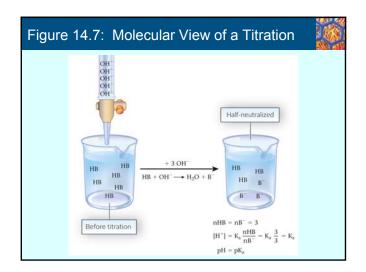
Strong Acid-Strong Base Titration Recall that strong acids ionize 100% to H* Strong bases ionize 100% to OH* H* and OH* combine to produce water The other two ions – the anion of the acid and the cation of the base – are spectators

	STRATEGY
(a) Convert pH to [H*] and s	ubstitute into Equation 14.1 to find [In"]/[HIn].
(b) Find the color of bromthy bromthymol blue at differ	mol blue at pH 6.5 by using the information in the above discussion of the colors for ent pH values.
	SOLUTION
(a) [In ⁻]/[HIn]	$6.5 = -\log_{10}[H^+] \longrightarrow [H^+] = 3 \times 10^{-7}$ $\frac{[In^-]}{[Hin]} = \frac{K_*}{[H^+]} = \frac{1 \times 10^{-7}}{3 \times 10^{-7}} = \frac{1}{3}$
(b) bromthymol blue color	At pH 7, bromthymol blue is green. Below pH 6, bromthymol blue is yellow. Since 6.5 is halfwav between 6 and 7, bromthymol blue at pH 6.5 is vellow-green.



	SOLUTION
Reaction	$H^+(aq) + OH^-(aq) \longrightarrow H_2O$
mol HCl	mol HCl = $V \times M$ = (0.05000 L)(1.000 mol/L) = 0.05000
mol NaOH	$0.05000 \text{ mol HCl} \times \frac{1 \text{ mol H}^+}{1 \text{ mol HCl}} \times \frac{1 \text{ mol OH}^-}{1 \text{ mol H}^+} \times \frac{1 \text{ mol NaOH}}{1 \text{ mol OH}^+} = 0.05000 \text{ mol NaOH}$
Volume of NaOH	$V = \frac{0.05000 \text{ mol}}{0.7450 \text{ mol/L}} = \frac{0.06711 L}{0.06711 L}$
ь	
	ANALYSIS
Information given:	HCl: V (0.05000 L); M (L000) from part (a): mol H* (0.05000); V NaOH (67.11 mL) volume NaOH in the titration (67.11 – 0.02 = 67.09 mL)
Asked for:	pH of the solution after NaOH is added continue

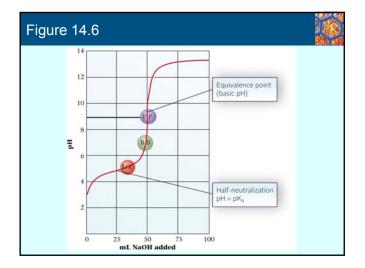
Features of a Strong Acid-Strong Base Titration


- · The pH starts out very low
- There is a gradual rise in pH as base is added
- Near the equivalence point, the pH rises sharply
 Most of the acid has been neutralized
- After the equivalence point, the pH rises slowly as more base is added to the titration mixture
- The K for this reaction is $1/K_{\rm w}\, or\, 1 \; X \; 10^{14}$
- The pH at the equivalence point is 7.00
- Any acid-base indicator can be used for a strong acid-strong base titration

nple 14.7	
EXAMPLE 14.7	
When 50.00 mL of 1.000 M	HCl is titrated with 0.7450 M NaOH, the pH increases.
 How many milliliters of 	f NaOH are required to reach the equivalence point and a pH of 7.00?
Find the pH when the point.	volume of NaOH added is 0.02 mL less than the volume required to reach the equivalence
Find the pH when the point.	volume of NaOH added is 0.02 ml. more than the volume required to reach the equivalence
0	
	ANALYSIS
Information given:	HCI: V (50.00 mL); M (1.000) NaOH: M (0.7450)
Information implied:	acid-base reaction
Asked for:	volume of NaOH required to reach the equivalence point
	STRATEGY
Recall the stoichiometry	of acid-base reactions discussed in Chapter 4.
2. Write the reaction.	
3. Find mol HCl.	
4. Follow the plan:	

		AND A
©		
	ANALYSIS	
Information given:	HCI: V (0.05000 L); M (1.000) from part (a): mol H* (0.05000); V NaOH (67.11 mL) volume NaOH in the titration (67.11 + 0.02 = 67.13 mL)	
Asked for:	pH of the solution after NaOH is added	
I.	STRATEGY	
1. Find mol OH		
2. Fill in a stoichiometric	table as in part (b).	
3. Find [excess reactant] a	is in part (b).	
4. Find pH.		continu

(0.06713 L)(0.7450 mol/	L) = 0.05001 mol	OH-	
Malk day weeks	H+	OH-	
Math days constant			
moi before reaction	0.05000	0.05001	
Change	-0.05000	-0.05000	
Mol after reaction	0	1 × 10*5	
Volume	50.00 mL	67.13 mL	
$[OH^-] = \frac{1 \times 10^{\circ}}{0.05000 + 0.0}$	$\frac{1}{06713 \text{ L}} = 9 \times 10^{-5}$	$M_{\rm i} [{\rm H^+}] = 1 \times 10^{-30} M$	
$\mathrm{pH} = -\mathrm{log}_{10}(1\times 10^{-10})$	= 10.0		
EN	D POINT		
	$\begin{array}{l} \mbox{Mol after reaction} \\ \mbox{Volume} \\ \mbox{[OH^-]} = \frac{1 \times 10^{\circ}}{0.05000 + 0.0} \\ \mbox{pH} = - \mbox{log}_{10} (1 \times 10^{-10}) \end{array}$	Mol after reaction O Volume 50.00 mL	



Weak Acid-Strong Base Titration

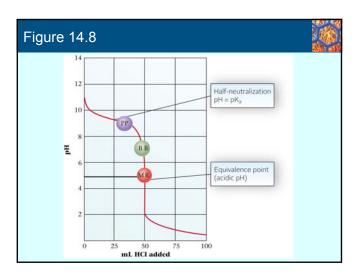
- Consider the titration of acetic acid with sodium hydroxide
 - $HC_2H_3O_2$ (aq) + OH^- (aq) $\Rightarrow C_2H_3O_2^-$ (aq) + H_2O
 - + K is the inverse of the K_{b} for $C_{2}H_{3}O_{2}^{-}$
 - K = 1/5.6 X 10⁻¹⁰ = 1.8 X 10⁹
 - K is very large, but not as large as that for a strong acid-strong base titration

Notes on Acetic Acid-Sodium Hydroxide Titration

- The pH starts out above 2; the titration begins with a weak acid
- The pH rises slowly until the equivalence point is approached, then rises rapidly
 - The region between the beginning and the equivalence point has $HC_2H_3O_2 \rightleftharpoons C_2H_3O_2^-$, which is a buffer solution
- At the equivalence point, we have a solution of a weak base (C₂H₃O₂⁻), with a pH greater than 7 as a result
- After the equivalence point, the pH rises slowly, as a strong base is being added to a weak one

EXAMPLE 14.8	
50.00 mL of 1.000 M acetic points in the titration:	acid, $HC_2H_3O_2$, is titrated with 0.8000 M NaOH. Find the pH of the solution at the following
before any base is adde	d
b when half the acetic ac	id has been neutralized
at the equivalence point	it
0	
ANALYSIS	
Information given:	HC ₂ H ₃ O ₂ (HAc): V (0.05000 L), M (1.000) NaOH: M (0.8000)
Information implied:	K ₄ for HAc
Asked for:	pH before titration starts (no base added)
	STRATEGY
L This is simply determini	ing the pH of a weak acid. Recall Example 13.7.
2. Let $x = [H^+] = [Ac^-]$ at $x = [H^+] << [HAc]_{e^-}$	t equilibrium. HAc at equilibrium = $\left[HAc \right]_{a} - x.$ Make the assumption that

Example 14		
	SOLUTION	
$x = [H^+]$ Check assumption	$\begin{split} 1.8 \times 10^{-5} &= \frac{(x)(x)}{1.000 - x} = \frac{x^2}{1.000} \longrightarrow x = 4.2 \times 10^{-3} M \\ \% \ \text{ionization} &= \frac{4.2 \times 10^{-3}}{1.00^{-3}} \times 100\% = 0.42\% < 5\% \\ \text{The assumption is valid.} \end{split}$	
pН	$pH = -\log_{10}(4.2 \times 10^{-3}) = 2.38$	
b	ANALYSIS	
Information given:	HC ₂ H ₃ O ₂ (HAc): V (0.05000 L), M (1.000) NaOH: M (0.8000)	
Information implied:	K _a for HAc	
Asked for:	pH at half-neutralization.	
	SOLUTION	
1. [H*] 2. pH	At half-neutralization $[H^+] = K_{qi} [H^+] = 1.8 \times 10^{-5}$ $pH = -log_{a0}(1.8 \times 10^{-5}) = 4.74$	continued


Weak Acid- Strong Base Indicator Selection

- In choosing an indicator for the acetic acid-sodium hydroxide titration, we need one that will change color at basic pH
 - Because the product of the titration is a weak base, the equivalence point will be basic
 - Phenolphthalein, with endpoint pH = 9, is a good choice for this titration

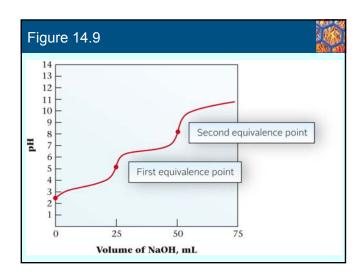
0	ANALYSIS
Information given:	HC ₂ H ₅ O ₂ (HAc): V (0.05000 L), M (1.000); from part (a): n (0.05000 mol) NaOH: M (0.0000)
Information implied:	Ka for HAc and Kb for Ac-
Asked for:	pH at the equivalence point
	STRATEGY
For the titration; mol H.	H required to reach the equivalence point. $Ac = mol OH^-$, all the acetic acid has been converted to acetate ions and mol $Ac^- = mol HAc$ at the start. Find

 Hydrochloric acid with ammonia H₃O⁺ (aq) + NH₃ (aq) ⇒ NH₄⁺ (aq) + H₂O Simplified reaction: H⁺ (aq) + NH₃ (aq) ⇒ NH₄⁺ (aq) Note that K is 1/K_a for NH₄⁺ K = 1/5.6 X 10⁻¹⁰ = 1.8 X 10⁹ K is large; it is of the same magnitude as the K for a 	Strong Acid-Weak Base Titration	
weak acid-strong base titration	 H₃O⁺ (aq) + NH₃ (aq) ≈ NH₄⁺ (aq) + H₂O Simplified reaction: H⁺ (aq) + NH₃ (aq) ≈ NH₄⁺ (aq) Note that K is 1/K_a for NH₄⁺ K = 1/5.6 × 10⁻¹⁰ = 1.8 × 10⁹ K is large; it is of the same magnitude as the K to 10⁻¹⁰ 	for a

1. Reaction	SOLUTION HAc(aq) + OH ⁻ (aq) \longrightarrow Ac ⁻ (aq) + H ₂ O	
2. Volume NaOH required	mol HAc = 0.05000 mol = mol OH ⁻ = mol NaOH	
	volume = $\frac{0.05000 \text{ mol}}{0.800 \text{ mol}/L} = 0.0625 \text{ L}$	
3. [Ac ⁻]	mol Ac ⁻ = mol HAc = 0.05000 mol	
	$[Ac^{-}] = \frac{0.05000 \text{ mol}}{(0.05000 + 0.06250) \text{ L}} = 0.4444 M$	
4. [OH-]	$K_b = \frac{[OH^-][[HAc^-]]}{[Ac^-]} \longrightarrow 5.6 \times 10^{-10} = \frac{(x)(x)}{0.4444}$	
	$x = [OH^{-}] = 1.6 \times 10^{-5} M$	
5. [H ⁺]; pH	$[H^*] = \frac{1.0 \times 10^{-14}}{1.6 \times 10^{-5}} = 6.2 \times 10^{-10}, pH = 9.20$	

Notes on HCI-NH₃ Titration

- The original pH is that of the weak base, which is approximately 12
- The pH falls slowly with the addition of the acid
 - Again, the addition of the acid to the weak base
 produces a buffer solution
- Near the equivalence point, the buffer is exhausted and the pH falls rapidly
- After the equivalence point, the pH falls slowly, as strong acid is being added to weak acid


Titrating Diprotic Acids

- Diprotic acids can be titrated similarly to monoprotic acids
 - Because there are two ionizable hydrogen ions, there are two equivalence points
 - Both equivalence points appear on the titration curve

Strong Acid-Weak Base Indicator Selection

- The pH at the equivalence point of a strong acidweak base titration is acidic
- The indicator must change color at an acidic pH
- For this titration, methyl red is a suitable choice
 Color change takes place at a pH of

approximately 5

ABLE 14.3 Char	racteristics of Acid-Base Titrations					
	Strong Acid-Strong Base					
Example	Equation	к	Species at Equivalence Point	pH at Equivalence Point	Indicator"	
NaOH-HCI Ba(OH)2-HNO3	$H^*(aq) + OH^-(aq) \longrightarrow H_2O$ $H^*(aq) + OH^-(aq) \longrightarrow H_2O$	$K = 1/K_w$ 1.0 × 10 ¹⁴ 1.0 × 10 ¹⁴	Na*, CI* Ba²*, NO3*	7.00 7.00	MR, 88, PP MR, 88, PP	
	Weak Acid-Stro	ng Base				
HC ₂ H ₃ O ₂ -NaOH HF-KOH	$HC_2H_3O_2(aq) + OH^-(aq) \longrightarrow C_2H_3O_2^-(aq) + H_2O$ $HF(aq) + OH^-(aq) \longrightarrow F^-(aq) + H_2O$	$K = 1/K_6$ 1.8×10^9 6.9×10^{10}	Na*, C2H3O2- K*, F-	9.22° 8.42°	PP PP	
	Strong Acid-We	ak Base				
NH3-HCI CIOHCI	$NH_3(aq) + H^*(aq) \longrightarrow NH_4^*(aq)$ $CIO^-(aq) + H^*(aq) \longrightarrow HCIO(aq)$	$K = 1/K_a$ 1.8×10^9 3.6×10^7	NH4+, CI- HCIO, CI-	4.78° 3.93'	MR MR	

Summary Notes on Acid-Base Titrations

- The equations that describe the reactions differ
- Strong acids and strong bases are H⁺ and OH⁻ in water
 The equilibrium constants (K) for the reactions are very large,
- indicating that the reactions go essentially to completionThe pH at the equivalence point is controlled by the species
 - Strong acid-strong base: pH = 7; neutral salt in water
 - Strong acid-strong base: pH = 7, neutral sait in water
 Weak acid-strong base: pH > 7; weak base in water
 - Strong acid-weak base: pH < 7; weak acid in water

Example 14.		
EXAMPLE 14.9		
Consider the titration of formio	c acid, HCHO ₂ , with barium hydroxide,	
(a) Write a balanced net ionic	equation for the reaction.	
(b) Calculate K for the reaction		
(c) Is the solution at the equiva	alence point acidic, basic, or neutral?	
(d) What would be an appropr	iate indicator for the titration?	
	SOLUTION	
(a) Reaction	$HCH_2O(aq) + OH^-(aq) \longrightarrow CHO_2^-(aq) + H_2O$	
(b) K	$CHO_2^-(aq) + H_2O \Longrightarrow HCH_2O(aq) + OH^-(aq) K_b$	
	$K = 1/K_b = 1/5.3 \times 10^{-11} = 1.9 \times 10^{10}$	
(c) Acidic, basic or neutral?	basic, due to the presence of CHO2-	
(d) Indicator	phenolphthalein	

Key Concepts

- 1. Calculate the pH of a buffer as initially prepared.
- 2. Choose a buffer for a specified pH.
- 3. Determine whether a combination of a strong acid/base and its salt is a buffer (or not).
- 4. Calculate the pH of a buffer after the addition of strong acid or base.
- 5. Determine the color of an indicator at a specific pH, given its $\rm K_{a}.$
- 6. Calculate the pH during an acid-base titration.
- 7. Choose the proper indicator for a titration.
- 8. Calculate K for an acid-base reaction.