

Thermodynamics

- Branch of science that deals with heat and energy effects
- Start with thermochemistry (recall Chapter 8)
- Consider other quantities related to the overall favorability (or unfavorability) of reaction
- Arrive at an understanding of the effects that cause a reaction to be spontaneous

Outline

- 1. Spontaneous processes
- 2. Entropy, S
- 3. Free energy, G
- 4. Standard free energy change, ΔG°
- 5. Effect of temperature, pressure, and concentration on reaction spontaneity
- 6. The free energy change and the equilibrium constant
- 7. Additivity of free energy changes; coupled reactions

Answers

- The answers to the fundamental question of spontaneity are extensions of the concepts in Chapter 8
 - ΔH is the enthalpy change
 - Endothermic reactions
 - Exothermic reactions: these tend to be favorable
 - Another quantity is required to determine spontaneity
 - ΔS is the change in entropy; a positive value helps make a reaction spontaneous
 - ΔG is the change in free energy; a negative value means a reaction will be spontaneous

Fundamental Question

- Will a reaction occur by itself at a given temperature and pressure, without the exertion of any outside force?
 - In other words, is a reaction *spontaneous*
 - This question must be asked by
 - Synthetic chemists
 - Metallurgists
 - Engineers

Spontaneous Processes

- Everyday processes that are spontaneous (take place on their own, without outside forces)
 - An ice cube will melt when added to a glass of water at room temperature
 - A mixture of hydrogen and oxygen will form water when a spark is applied
 - An iron (or steel) tool will rust if exposed to moist air

The Chemistry of Spontaneous Reactions

- $H_2O(s) \rightarrow H_2O(l)$
- $2H_2(g) + O_2(g) \rightarrow 2H_2O(I)$
- 2Fe (s) + 3/2 $O_2(g) \rightarrow Fe_2O_3(s)$
- · All three reactions are spontaneous

The Energy Factor

- Many spontaneous processes proceed with a decrease in energy
 - Boulders roll downhill
 - Your notebook computer's battery discharges as you use the system if it is unplugged from the wall
- Recall that exothermic reactions proceed with a decrease in energy
 - Spontaneous reactions are typically exothermic
- The reverse is also true
 - · Exothermic reactions are typically spontaneous

Spontaneity

- It is important not to confuse spontaneous with fast rate of reaction and spontaneity are not necessarily connected
- If a reaction is spontaneous in one direction, it will be non-spontaneous in the reverse direction under the same conditions
 - Water does not spontaneously decompose into hydrogen and oxygen at room temperature without sustained outside influence

Exceptions

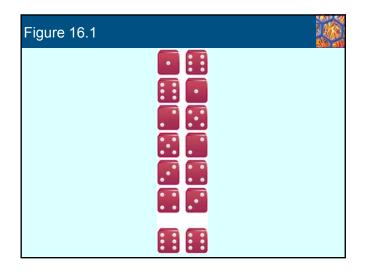
- The simple rule fails for phase changes
- H₂O (s) → H₂O (l) is endothermic but spontaneous at room temperature
- Some reactions become spontaneous with a simple increase in temperature
 - $CaCO_3 (s) \rightarrow CaO (s) + CO_2 (g) \quad \Delta H = +178.3 \text{ kJ}$
- Clearly, ΔH is not the only criterion for spontaneity

Spontaneity and Equilibrium

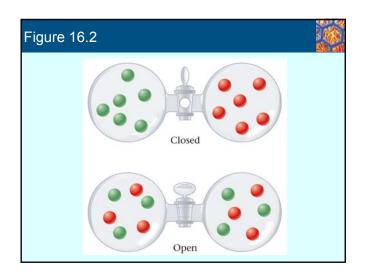
- A spontaneous process moves a reaction system toward equilibrium
- A nonspontaneous process moves a reaction system away from equilibrium

The Randomness Factor

Nature tends to move spontaneously from a state of lower probability (order) to one of higher probability (disorder), or

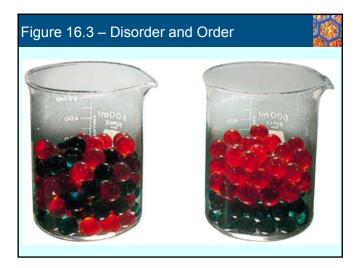

• Each system which is left to its own, will, over time, change toward a condition of maximum probability

Roll of the Dice


- When rolling a pair of dice:
 - There is only one way to roll a 2 or a 12
 - There are six ways to roll a 7
 - The probability of rolling a 7 is six times greater than that of rolling 2 or 12
 - The state 7 is of higher probability than the state 2 or 12

Mixing Gases

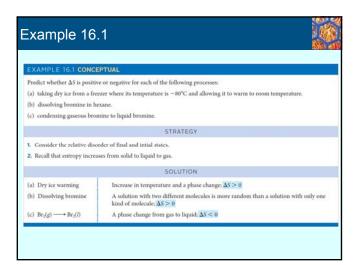
- When an apparatus consisting of flasks of hydrogen and nitrogen is opened to allow the gases to mix, the process proceeds with the result being a random mix of both molecules
 - · This process is spontaneous
 - The system will not spontaneously separate itself into hydrogen and nitrogen
 - The mixture is more random than the pure gases

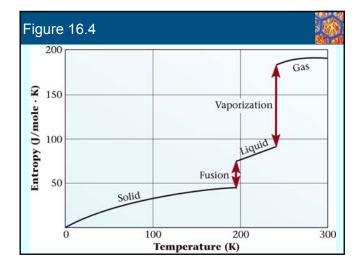


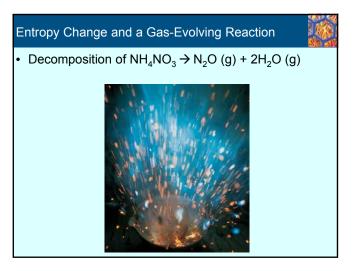
Random States In general Nature tends to move from more ordered to more random states Randomness is of higher probability than order

Entropy, S

- Entropy is given the symbol S
- Entropy is often described as an increase in disorder or randomness
 - Consider microstates: different ways in which molecules can be distributed
 - An increase in the number of microstates is an increase in entropy
 - The larger the number of possible microstates, the more probable the state, and the greater the entropy




The Third Law of Thermodynamics


- A completely ordered, pure crystalline solid at 0 K has an entropy of zero
 - This is the only time the entropy of a substance is zero
 - Absolute zero has not been reached; it is still a theoretical limit

Factors that Influence Entropy

- A liquid has higher entropy than the solid from which it formed
 - · Liquids are more random than solids
- A gas has higher entropy than the liquid or solid from which it formed
 - Gases are more random than either liquids or solids
- Increasing the temperature of a substance increases entropy
 - Molecular kinetic energy increases, and with it, randomness

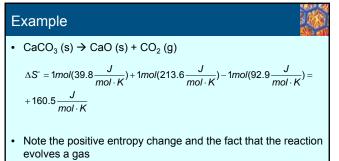
Entropy and Entropy Changes

- The standard molar entropy of a substance is given the symbol, S°
- The standard molar entropy change for a process is given the symbol, ΔS°

le 16	.1						
TABLE 16.1 S	tandard Entro	opies at 25°C (J/r	nol-K) of Eler	ments and Comp	ounds at 1 at	m, Aqueous lons	at 1 M
			E	lements			
Ag(s)	42.6	Cl ₂ (g)	223.0	6(1)	116.1	O2(g)	205.0
AI(s)	28.3	Cr(s)	23.8	K(s)	64.2	Pb(s)	64.8
Ba(s)	62.8	Cu(s)	33.2	Mg(3)	32.7	P ₄ (s)	164.4
Br ₂ ())	152.2	F2(g)	202.7	Mn(s)	32.0	S(s)	31.8
C(s)	5.7	Fe(s)	27.3	$N_2(g)$	191.5	Si(s)	18.8
Ca(s)	41.4	$H_{p}(g)$	130.6	Na(s)	51.2	Sn(s)	51.6
Cd(s)	51.8	Hg0)	76.0	Ni(s)	29.9	Zn(s)	41.6
			Co	mpounds			
AgBr(s)	107.1	CaCl ₂ (s)	104.6	H ₂ O(g)	188.7	NH ₄ NO ₂ (5)	151.1
AgCI(s)	96.2	CaCO ₂ (s)	92.9	H ₂ O(7)	69.9	NO(g)	210.7
Agt(s)	115.5	CaO(s)	39.8	H ₂ O ₂ ()	109.6	NO ₂ (g)	240.0
AgNO ₃ (s)	140.9	Ca(OH) ₂ (s)	83.4	$H_2S(g)$	205.7	N2O4(g)	304.2
Ag ₂ O(s)	121.3	CaSO ₄ (s)	106.7	H250,00	156.9	NaCI(s)	72.1
Al ₂ O ₂ (s)	50.9	CdCL(s)	115.3	HgO(s)	70.3	NaF(s)	51.5
BaCl ₂ (s)	123.7	CdO(s)	54.8	KBr(s)	95.9	NaOH(s)	64.5
BaCO ₂ (s)	112.1	Cr2O2(s)	81.2	KCI(s)	82.6	NiO(s)	38.0
BaO(s)	70.4	CuO(s)	42.6	KCIO ₂ (s)	143.1	PbBr ₂ (s)	161.5
BaSO ₄ (s)	132.2	Cu ₂ O(s)	93.1	KCIO ₄ (s)	151.0	PbCl ₂ (s)	136.0
CCI40)	216.4	CuS(s)	66.5	KNO ₃ (s)	133.0	PbO(s)	66.5
CHCI_(/)	201.7	Cu ₂ S(s)	120.9	MgCl ₂ (s)	89.6	PbO ₂ (s)	68.6
$CH_d(g)$	186.2	CuSO ₄ (s)	107/5	MgCO ₃ (s)	65.7	PCI ₂ (g)	311.7
C2H2(g)	200.8	Fe(OH) ₃ (s)	106.7	MgO(s)	26.9	PCI ₅ (g)	364.5
$C_2H_4(g)$	219.5	Fe ₂ O ₂ (s)	87.4	Mg(OH) ₂ (s)	63.2	SiO ₂ (s)	41.8
$C_2H_c(g)$	229.5	Fe ₃ O ₄ (s)	146.4	MgSO ₄ (s)	91.6	SnO ₂ (s)	52.3
$C_2H_0(g)$	269.9	HBr(g)	198.6	MnO(s)	59.7	SO2(g)	248.1
CH ₂ OH(/)	126.8	HCI(g)	186.8	MnO ₂ (s)	53.0	SO ₂ (g)	256.7
C2H5OH(I)	160.7	HF(g)	173.7	$NH_3(g)$	192.3	Znl ₂ (s)	161.1
CO(g)	197.6	HI(g)	206.5	$N_2H_4(I)$	121.2	ZnO(s)	43.6
CO ₂ (g)	213.6	HNO ₂ (I)	155.6	NH ₄ Cl(s)	94.6	ZnS(s)	577

Standard Molar Entropies

- Unlike enthalpy, molar entropy cannot be directly measured
- Notes
 - Elements have nonzero molar entropies
 In calculating the standard molar entropy change, elements must be taken into account
 - Standard molar entropies are always positive numbers, i.e., S° > 0
 - Aqueous ions may have negative S° values, since they are determined relative to S° for H⁺, which is defined as 0.0 J/mol-K

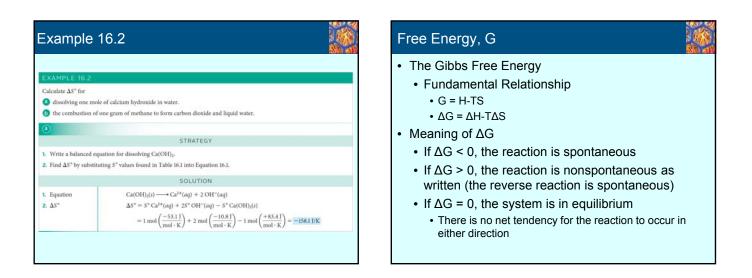

Table 16.1, (Cont'd) Table 12.2 (/mot-k) of Elements and Compounds at 1atm, Aqueous hors at 18 Contrast 16 Arriago 2000 Arriago 2000 Contrast 2000</t

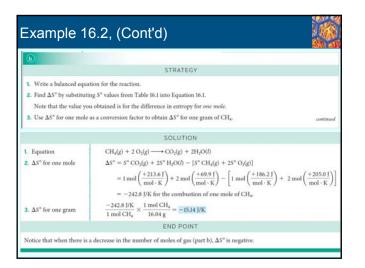
ΔS° for Reactions

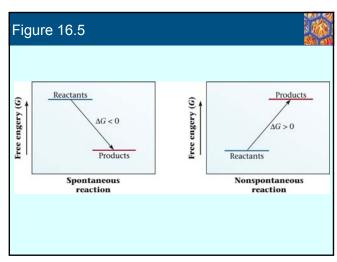
- The defining equation for ΔS° is similar to that for ΔH° : $\Delta S^{\circ} = \sum \Delta S^{\circ} \text{ products} - \sum \Delta S^{\circ} \text{ reactants}$
- In calculating $\Delta S^\circ\,$, the coefficients of the balanced equation are taken in exactly the same way as they are for $\Delta H^\circ\,$

Entropy Units

- Note that standard molar entropies are usually smaller in magnitude than enthalpies
 - Units may be J/mol-K or kJ/mol-K
 - Pay attention to J vs. kJ in calculations!


· Gas-forming reactions always have positive entropy changes


The Second Law of Thermodynamics


- In a spontaneous process, there is a net increase in entropy, taking into consideration both the system and the surroundings
- That is, for a spontaneous process:

$$\Delta S_{universe} = (\Delta S_{system} + \Delta S_{surroundings}) > 0$$

- In principle, the second law can be used to determine whether a reaction is spontaneous or not; in practice, this is not easy
 - It is difficult to calculate the entropy change of the surroundings
 - There is another quantity that can be used more readily to determine spontaneity

Relation Among ΔG , ΔH and ΔS

- The Gibbs-Helmholtz equation
 - $\Delta G = \Delta H T\Delta S$
- · Spontaneous reactions generally have
 - ∆H < 0
 - ∆S > 0
- · In specific cases, either term may dominate
 - With phase changes, ΔS is dominant
 - With some reactions, ΔS is nearly zero and ΔH will dominate

EXAMPLE 16.3		
Calcium sulfate, CaSO ₄ , is u	sed as a drying agent and sold under the trade name Drierite. For the reaction	
calculate	$CaSO_4(s) \longrightarrow Ca^{2+}(aq) + SO_4^{2-}(aq),$	
	ΔG° at 25°C	
	- 40 m 20 C	
0		
	ANALYSIS	
Information given:	equation for the reaction $(CaSO_4(s) \longrightarrow Ca^{2+}(aq) + SO_4^{2-}(aq))$	
Information implied:	Table 8.3 (ΔH_l^{α} values)	
Asked for:	ΔH^{0}	
	STRATEGY	
1. Recall Equation 8.4 to de	termine ΔH° .	
$\Delta H^{+} = \Sigma \Delta H_{f}^{+}_{products} -$	$\Sigma \Delta H_{t, \text{products}}^{+}$	
2 Obtain ALIS subras from	Table 8.3 and substitute into Equation 8.4.	continued

The Standard Free Energy Change, ΔG°

- · Standard conditions
 - Gases are at 1 atm partial pressure
 - Solutions are 1M for ions or molecules
- Under standard conditions,
 - $\Delta G^{\circ} = \Delta H^{\circ} T\Delta S^{\circ}$
- · Recall that
 - If ΔG° < 0, the reaction is spontaneous
 - If $\Delta G^{\circ} > 0$, the reaction is nonspontaneous
 - If ΔG° = 0, the reaction is at equilibrium

Example 16.3, (Cont'd)				
	SOLUTION			
ΔH^{+}	$\begin{split} \Delta H^0 &= \Delta H_t^0 Ca^{2*}(aq) + \Delta H_t^0 SO_4^{2-}(aq) - \Delta H_t^0 Ca SO_4(s) \\ &= -542.8 \text{ kJ} - 909.3 \text{ kJ} - (-1434.1 \text{ kJ}) = -18.0 \text{ kJ} \end{split}$			
b	ANALYSIS			
Information given:	equation for the reaction (CaSO ₄ \longrightarrow Ca ²⁺ (aq) + SO ₄ ²⁻ (aq))			
Information implied:	Table 16.1 (S ⁰ values)			
Asked for:	Δ5°			
	STRATEGY			
Obtain S° values from Tabl	e 16.1 and substitute into Equation 16.1,			
	SOLUTION			
ΔS°	$\Delta S^{\circ} = S^{\circ} \operatorname{Ca}^{2*}(aq) + S^{\circ} \operatorname{SO}_{4}^{2*}(aq) - S^{\circ} \operatorname{Ca}\operatorname{SO}_{4}(s)$ = -53.1]/K + 20.1]/K - 106.7]/K = -139.7]/K			

Free Energy of Formation

- We can use the Gibbs-Helmholtz equation to calculate the standard free energy of formation for a compound
 - $\Delta G_{\!\scriptscriptstyle f}^{\scriptscriptstyle \circ}$ for a compound is
 - Analogous to the enthalpy of formation discussed in Chapter 8
 - + For the formation of one mole of the compound from elements in their standard (native) states at 25 $^\circ\,$ C and 1 atm pressure
 - The sign of ΔG_f°
 - · If negative, the formation of the compound is spontaneous
 - If positive, the formation of the compound is nonspontaneous

ANALYSIS
From part (a): $\Delta H^{a}(-18.0 \text{ kJ})$ From part (b): $\Delta S^{a}(-139.7 \text{ J/K})$
ΔG°
STRATEGY
sholtz equation (Equation 16.2). SOLUTION
$\Delta S^{o} = -139.7 \text{ J/K} = -0.1397 \text{ kJ/K}; 25^{o}\text{C} = 298 \text{ K}$
$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ} = -18.0 \text{ kJ} - 298 \text{ K}(-0.1397 \text{ kJ/K}) = 23.6 \text{ kJ}$
END POINT
standard conditions
$-SO_c^{2-}(aq, 1M)$

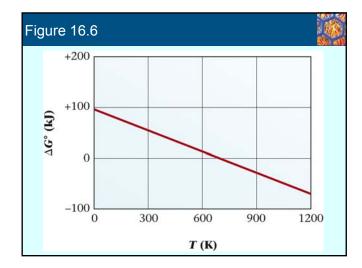
$\Delta G_{f}^{\circ} = -237.2 \text{ kJ/mol}$
$\Delta G_{i}^{\circ} = -50.7 \text{ kJ/mol}$
$\Delta G_{f}^{\circ} = +209.2 \text{ kJ/mol}$

Calculation of ∆G	° at Other Temperatures	
of ΔH° and ΔS° c	t other temperatures, only the value	

Another Look at the Free Energy of Formation	
Another way to calculate the free energy of formation	
$\Delta G^{\circ} = \sum \Delta G^{\circ}$, products $-\sum \Delta G^{\circ}$, reactants	
 Notice that there is no temperature term in this equation, so is important to realize that the calculation is valid only at the temperature at which the values of ΔG[*]_r are tabulated 	

Example 16	0.5
EXAMPLE 16.5	
Iron, a large component of	steel, is obtained by reducing iron(III) oxide (present in hematite ore) with hydrogen in a blast Let of the reaction. Calculate ΔG^{0} at 230°C for the reduction of one mole of Fe ₂ O ₃ .
	ANALYSIS
Information given:	n Fe ₂ O ₃ (one mole); temperature (230°C)
Information implied:	Table 8.3 (ΔH_i^2 values) Table 16.1 (S° values)
Asked for:	ΔG^{ϕ}
	STRATEGY
1. Write a balanced equation	on for the reaction.
2. Find ΔH_{f}^{o} values in Table	le 8.3 (or Appendix 1) and substitute into Equation 8.3 to obtain ΔH° .
 Find S^o values in Table 1 J/K to kJ/K.) 	16.1 (or Appendix 1) and substitute into Equation 16.1 to obtain $\Delta S^{a}.$ (Remember to convert
 Change ^oC to K and sub obtain ΔG^o. 	stitute the values for ΔH^o and ΔS^o into the Gibbs-Helmholtz equation (Equation 16.2) to

xample 16	0.4
EXAMPLE 16.4	
Using ΔG_t^n values from Ap Example 16.3.	pendix 1, calculate the standard free energy change at 25°C for the reaction referred to in
	ANALYSIS
information given:	equation for the reaction (CaSO ₄ (s) \longrightarrow Ca ²⁺ (aq) + SO ₄ ²⁻ (aq))
Information implied:	$\Delta G_l^{ o}$ values (Appendix 1)
Asked for:	ΔG^{*}
	STRATEGY
Obtain $\Delta G_{ m f}^{\circ}$ values from A	ppendix 1 and substitute into Equation 16.3.
	SOLUTION
ΔG*	$\begin{split} \Delta G^{a} &= \Delta G_{t}^{a} C a^{2*}(aq) + \Delta G_{t}^{a} \operatorname{SO}_{4}^{2*}(aq) - \Delta G_{t}^{a} \operatorname{CaSO}_{4}(s) \\ &= -553.6 \text{ kJ} - 744.5 \text{ kJ} + 1321.8 \text{ kJ} = \frac{1+23.7 \text{ kJ}}{23.7 \text{ kJ}} \end{split}$
	END POINT
Notice that the value of ΔG	^{2°} at 25°C is essentially identical to that obtained in Example 16.3, which is reassuring.


	P. O. G. L. MIL G
tion	$Fe_2O_3(s) + 3H_2(g) \longrightarrow 2Fe(s) + 3H_2O(g)$ $\Delta H^0 = 3\Delta H_1^0 H_3O(g) - \Delta H_2^0 Fe_3O_3(s) = -725.4 \text{ kJ} + 824.2 \text{ kJ} = +98.8 \text{ kJ}$
	$\Delta S^{0} = 3S^{0} H_{2}O(g) + 2S^{0} Fe(s) - 3S^{0} H_{2}(g) - S^{0} Fe_{2}O_{3}(s)$
	= 566.1 J/K + 54.6 J/K - 391.8 J/K - 87.4 J/K = +141.5 J/K = +0.1415 kJ/K
	$\Delta G^{*} = \Delta H^{*} - T \Delta S^{*} = 98.8 \text{ kJ} - (273 + 230)\text{K} (0.1415 \text{ kJ/K}) = +27.6 \text{ kJ}$

Temperature Effects

- Unlike $\Delta H^\circ~$ and $\Delta S^\circ~, \Delta G^\circ~$ is highly temperature dependent
- A plot of $\Delta G^\circ~~vs.~T$ will be linear
 - Slope = $-\Delta S^{\circ}$
 - y-intercept at 0 K is ΔH°

Changes and Spontaneity

- The spontaneity of a reaction will change with
 - Temperature
 - Pressure
 - Concentration

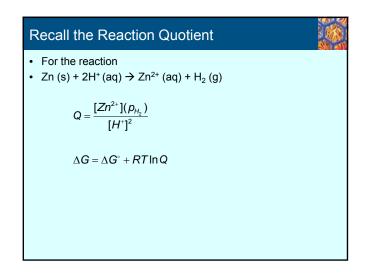
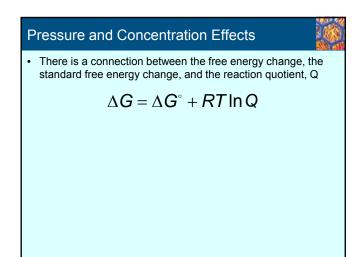

BLI	E 16.2 E	ffect of	Temperature on Rea	action Spontaneity
	ΔH°	ΔS°	$\Delta G^\circ = \Delta H^\circ - T \Delta S^\circ$	Remarks
	-	+	Always –	Spontaneous at all T; reverse reaction always nonspontaneous
I.	+	-	Always +	Nonspontaneous at all <i>T</i> ; reverse reaction occurs
11	+	+	+ at low T – at high T	Nonspontaneous at low <i>T</i> ; becomes spontaneous as <i>T</i> is raised
V	-	8. 11	- at low T + at high T	Spontaneous at low T; at high T, reverse reaction becomes spontaneous

Figure 16.6 – From Example 16.5

- Reduction of Fe₂O₃:
 - $Fe_2O_3(s) + 3H_2(g) \rightarrow 2Fe(s) + 3H_2O(l)$
 - Notes
 - + $\Delta G^\circ~$ decreases with increasing temperature
 - The sign of $\Delta G^\circ~$ changes at 698 K
 - For the plot to appear this way
 - ΔS° must be positive
 - + ΔH° must be positive


Temperature		
 A reaction for which ΔH° spontaneous at all tempe 		> 0 is
 A reaction for which ΔH° spontaneous as written 	> 0 and ΔS°	< 0 is never
 A reaction for which ΔH° spontaneous at low temp 		< 0 is
 A reaction for which ΔH° spontaneous at high temp 		> 0 is
		> 0 is

Example 16	5.6
EXAMPLE 16:6	
	ΔG° become zero for the reaction considered in Example 16.5?
11.5500.5000 .	$Fe_2O_3(s) + 3H_2(g) \longrightarrow 2Fe(s) + 3H_2O(g)$
	ANALYSIS
Information given:	equation for the reaction (Fe ₂ O ₃ (s) + $3H_2(g) \longrightarrow 2 Fe(s) + 3H_2O(g)$) $\Delta G^{\circ}(0)$
Information implied:	from Example 16.5 (ΔH^o and ΔS^o)
Asked for:	T
	STRATEGY
Substitute ΔH^{\pm} and ΔS° val	lues from Example 16.5 into the Gibbs-Helmholtz equation.
	SOLUTION
$\Delta H^0; \Delta S^0$	$\Delta H^0 = 98.8 \text{ kJ}; \Delta S^0 = 0.1415 \text{ kJ/K}$
T	$\Delta G^{0} = \Delta H^{0} - T\Delta S^{0}; 0 = 98.8 \text{ kJ} - T(0.1415 \text{ kJ/K}); T = \frac{98.8 \text{ kJ}}{0.1415 \text{ kJ/K}} = \frac{698 \text{ K}}{698 \text{ K}}$

Direction of Spontaneity Change	
 To calculate the temperature at which the spontaneity changes from Spontaneous to nonspontaneous Nonspontaneous to spontaneous find the temperature at which ΔG° = 0 T = ΔH° / ΔS° 	

Example 16.7		
XAMPLE 16.7 GRAD	ED//	
When zinc is dissolved in a	strong acid, zinc ions and hydrogen gas are produced.	
	$Zn(s) + 2H^*(aq) \longrightarrow Zn^{2*}(aq) + H_2(g)$ n Hg. $[Zn^{2*}] = 0.10 M$. $[H^+] = 1.0 \times 10^{-4} M$. 00.0 kJ, $P_{H_2} = 0.933$ atm. $[Zn^{2*}] = 0.220 M$ and the mass of Zn is 155 g.	
	ANALYSIS	
nformation given:	equation for the reaction (Zn(s) + 2H ⁺ (aq) \longrightarrow Zn ²⁺ (aq) + H ₂ (g)) T(25°C)	
nformation implied:	$\Delta G_{\rm f}^{\circ}$ values at 25°C (Appendix 1)	
Asked for:	ΔG^{*}	continued

	STRATEGY	
S = 16.1 GeV 1. Find ΔG^* by substituting ΔG_i^* values into Equation 16.3.		
 Recall that ΔG[*] for eler 	sents in their native state at 25°C and H* (aq) is zero.	
ΔG°	$\begin{split} \Delta G^{*} &= \Delta G_{1}^{*} Z n^{2*}(aq) + \Delta G_{1}^{*} H_{2}(q) - \left[\Delta G_{2}^{*} Z n(s) + 2(\Delta G_{1}^{*} H^{*}(aq)) \right] \\ &= -147.1 \text{ kJ} \qquad \qquad$	
Ð		
	ANALYSIS	
Information given:	P_{14_c} (750 mm Hg); [Zn ²⁺](0.10 M); [H ⁺](1.0 × 10 ⁻⁴ M); T(25 ^o C) from part (a): $\Delta G^{\circ}(-147.1 \text{ k})$	
Information implied:	R value in energy units	
Asked for:	ΔG	
STRATEGY		
 Write the expression for Q and find its value. Recall that solids and pure liquids are not included. Make sure that concentrations are expressed in molarity and that pressure is in atm. 		
2. Substitute into Equation 16.4. Remember that R must be in kJ/K and T must be in K.		
	SOLUTION	
L Q	$Q = \frac{[Zn^{24}]P_{16}}{[H^+]^2} = \frac{(0.10)(750760)}{(1.0 \times 10^{-6})^2} = 9.9 \times 10^6$	
2. AG	$\Delta G = \Delta G^{*} + RT \ln Q = -147.1 \text{ kJ} + (0.00831 \text{ kJ/K})(298 \text{ K}) \ln (9.9 \times 10^{6})$	
40	= -147.1 k1 + 39.9 k3 = -107.2 k3	

Example 16.7, (Cont'd)		
C		
	ANALYSIS	
Information given:	$P_{\rm H_2}(0.933~{\rm atm});~[{\rm Zn}^{2+}](0.220~M);~{\rm mass}~{\rm Zn}(155~{\rm g});~T(25^{\circ}{\rm C})$ $\Delta G(-100.0~{\rm k}])$ From part (a): $\Delta G^{\circ}(-147.1~{\rm kJ})$	
Information implied:	R value in energy units	
Asked for:	рН	
	STRATEGY	
 Find Q by substituting it Write the equation for Q Solve for [H*] by substit 		
		continued

ΔG and the Equilibrium Constant	
 There is clearly a relationship between the free and the equilibrium constant It is expressed in the equation involving Q Remember that at equilibrium, ΔG = 0 so 	e energy change
$\Delta G = \Delta G^{\circ} + RT \ln Q$ $0 = \Delta G^{\circ} + RT \ln K$ $\Delta G^{\circ} = -RT \ln K$	

Example 16.7, (Cont'd)		Equilibrium Constants
1.0	SOLUTION -100.0 kJ = -147.1 kJ + (0.00831 kJ/K)(298 KJln Q	 The relationship between ΔG and K holds for all equilibrium constants we have seen so far K_a,K_b,K_w,K_f,K_{sp}
2. Q expression 3. [H*]; pH	$\ln Q = \frac{47.1}{(0.00831)(298)} = 19.0 \longrightarrow Q = e^{47.0} = 1.82 \times 10^{8}$ $Q = \frac{[Za^{14}](P_{\rm H_{\rm c}})}{[{\rm H}^{+}]^{2}} = \frac{(0.220)(0.933)}{[{\rm H}^{+}]^{2}} = 1.82 \times 10^{8}$ $[{\rm H}^{+}] = \left(\frac{(0.220)(0.933)}{(1.82 \times 10^{8})}\right)^{1/2} = 3.35 \times 10^{-5} \text{M}; \text{pH} = -\log_{10} 3.35 \times 10^{-5} = 4.47$	

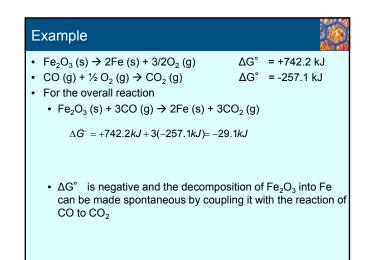
Concentration Changes

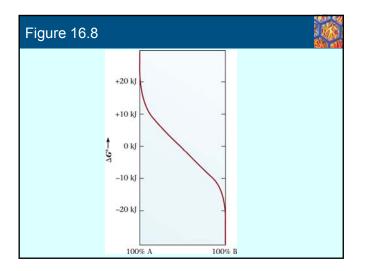
- Changes in concentration will cause Q to change • •
 - For NH₄Cl (s) \rightarrow NH₃ (g) + HCl (g) ΔG° = +13.0 kJ
 - Changing the pressures of NH₃ and HCl from the standard 1.0 atm each to 0.10 atm each and increasing the temperature to 300 ° C:

 $\Delta G = \Delta G^{\circ} + RT \ln Q$

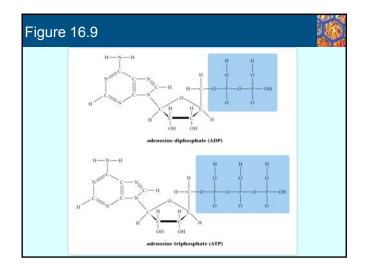
 $\Delta G = +13.0 kJ + (8.31X10^{-3})(573) \times \ln(0.010)$ $\Delta G = -8.9 kJ$

Figure 16.7 – Saturated SrCrO₄


 The fact that SrCrO₄ does not dissolve readily in water indicates that the reaction is non-spontaneous


ple 16.8	
EXAMPLE 16.8	
Using ΔG_l^* tables in Appen	dix 1, calculate the solubility product constant, $K_{\rm qs}$ for PbCl2 at 25°C.
	ANALYSIS
Information given:	equation for dissolving PbCl ₂ (PbCl ₂ (i) \longrightarrow Pb ¹⁺ (aq) + 2Cl ⁻ (aq)) T(25 ⁺ C)
Information implied:	ΔG_i^{μ} values (Appendix 1) R value
Asked for:	K _{ap}
	STRATEGY
	t Appendix 1 and substitute into Equation 16.3. 16.5 to find K_{qq} , which is K .
	SOLUTION
ΔG^{*}	$\begin{split} \Delta G^a &= \Delta G_l^a \; \mathrm{Pb}^{2*}(aq) + 2 \Delta G_l^a \; \mathrm{Cl}^-(aq) - \Delta G_l^a \; \mathrm{Pb} \mathrm{Cl}_2(s) \\ &= -24.4 \; \mathrm{kl} + 2(-131.2 \; \mathrm{kl}) + 314.1 \; \mathrm{kl} = +27.3 \; \mathrm{kl} \end{split}$
K _{sp}	$\begin{split} \Delta G^{+} &= -RT \ln K_{qq}; 27.3 \text{ kJ} = -(0.0083) \text{ kJ/K})(298 \text{ K}) \ln K_{qq} \\ \ln K_{qq} &= -11.0 \longrightarrow K_{qq} = e^{-0.0} = \frac{1.7 \times 10^{-5}}{10^{-5}} \end{split}$
	END POINT

Additivity of ΔG ; Coupled Reactions


- · As with enthalpy, if
- Reaction 3 = Reaction 1 + Reaction 2, then
 - $\Delta G_3 = \Delta G_1 + \Delta G_2$
 - This is Hess's Law extended to free energy change

Relating Free Energy and Extent of Reaction for $A \rightarrow B$	
 If ΔG° is greater than +20 kJ, the equilibrium constant is so small that virtually no reaction takes place; the equilibrium mixture is mostly A If ΔG° is less than -20 kJ, the equilibrium constant is so large that the reaction goes virtually to completion; the equilibrium mixture is mostly B If ΔG° is between +20 kJ and -20 kJ, the equilibrium mixture will contain appreciable amount of both A and B 	

Biochemical Reactions
 Consider that the chemical reactions that underlie human physiology must occur at relatively low temperatures
 In order for these reactions to be spontaneous, they are coupled to a highly spontaneous reaction: ATP → ADP ΔG° < 0
 The body stores energy as ATP, which is supplied to otherwise unfavorable reactions in the body

Key Concepts

- 1. Deduce the sign of ΔS° for a process from consideration of randomness
- 2. Calculate ΔS° for a reaction using thermochemical data
- 3. Calculate $\Delta G^\circ~$ at any temperature, knowing $\Delta H^\circ~$ and $\Delta S^\circ~$
- 4. Calculate $\Delta G^\circ~$ at 25 $^\circ~$ C from free energies of formation
- 5. Calculate the temperature at which $\Delta G^{\circ} = 0$
- 6. Calculate ΔG from $\Delta G^\circ~$, knowing pressures and concentrations
- 7. Relate ΔG° to K

Example 16.9	Key Concepts, (Cont'd)	
	8. Calculate ΔG° for a set of coupled reactions	AUR: 50
EXAMPLE 16.9		
The lactic acid (C ₁ H ₄ O ₂ (aq), $\Delta G_{i}^{\mu} = -559$ kJ) produced in muscle cells by vigorous exercise eventually is absorbed into the bloodstream, where it is metabolized back to glucose ($\Delta G_{i}^{\mu} = -919$ kJ) in the liver. The reaction is		
$2C_3H_6O_3(aq) \longrightarrow C_6H_{12}O_6(aq)$		
(a) Calculate ΔG° at 25°C for this reaction, using free energies of formation.		
(b) If the hydrolysis of ATP to ADP is coupled with this reaction, how many moles of ATP must react to make the process spontaneous?		

Example 16.9, (Cont'd)		
	ANALYSIS	
information given:	equation for the reaction $(2C_1H_4O_3(aq) \longrightarrow C_4H_4O_4(aq))$ ΔG^+_1 values: $C_3H_2O_3(aq) (-559 \text{ k}); C_4H_4O_4(aq)(-919 \text{ k}))$ $7(25^*C_2)$ energy from ATP/mol (31 k))	
Asked for:	(a) ΔG^{σ} (b) mol ATP for spontaneity	
	STRATEGY	
a) Find ΔG^{*} using the Δ	Gf" values given in Appendix 1.	
$\Delta G^{a} = \Sigma \Delta G^{a}_{l podents} -$	$\Sigma \Delta G_{f}^{\phi}_{restants}$	
(b) Convert the energy of	staned in (a) to moles ATP by using the conversion factor: 31 kJ/mol ATP	
	SOLUTION	
a) ΔG*	$\begin{array}{l} \Delta G^{+} = \Delta G_{1}^{\mu} C_{k} H_{12} O_{k} (aq) - 2 \Delta G_{1}^{\mu} C_{3} H_{k} O_{3} (aq) \\ = - 919 kJ + 2(559 kJ) = + 199 kJ \end{array}$	
b) mol ATP	$199 \text{ kJ} \times \frac{1 \text{ mol ATP}}{31 \text{ kJ}} = 6.4 \text{ mol ATP}$	