

Outline

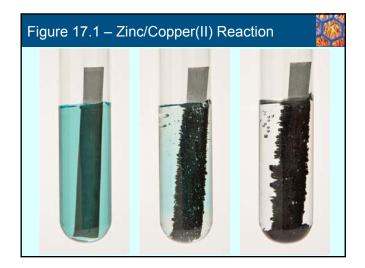
- 1. Voltaic cells
- 2. Standard voltages
- 3. Relations between E° , $\Delta G^\circ~$ and K
- 4. Electrolytic cells
- 5. Commercial cells

Voltaic Cells

- In principle, any spontaneous redox reaction can serve as the source of energy for a voltaic cell
 Call design
- Cell design
 - Oxidation at one electrode (anode)
 - Reduction at the other electrode (cathode)
 - Electrons move through an external circuit from the anode to the cathode

Electrochemistry

- *Electrochemistry* is the study of the conversion of electrical and chemical energy
- The conversion takes place in an electrochemical cell, of which there are two main types
 - Voltaic cells
 - · Electrolytic cells


Mnemonic

- · Oxidation and anode both begin with vowels
 - An ox
- Reduction and cathode both begin with consonants
 Pod cot
 - Red cat

Zn-Cu²⁺ Reaction

- Zn (s) + Cu²⁺ (aq) → Zn²⁺ (aq) + Cu (s)
 - · When run directly in a test tube
 - Cu metal plates out on surface of Zn metal
 - Zn metal enters solution as Zn^{2+} ions
 - Blue color of Cu^{2+} solution fades

Tracing the Flow of Electrons,

 At the zinc electrode, electrons are produced Zn (s) → Zn²⁺ (aq) + 2e⁻

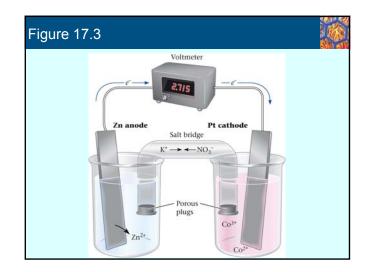
The sign of this electrode is (-); think of it as an electron pump

Electrons flow from the red lead, through the voltmeter, to the black lead; the needle deflection indicates the cell voltage

 The electrons enter the cathode, at which Cu²⁺ (aq) + 2e⁻ → Cu (s) The sign of this electrode is (+)

Zn-Cu²⁺ Cell

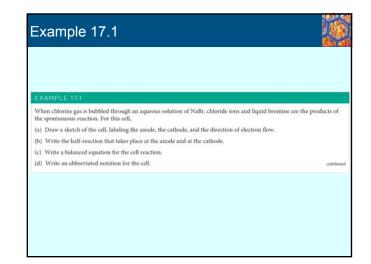
- To set up a voltaic cell for the same reaction, we separate the two half-reactions into half cells
 - Zn anode dips into a solution of Zn²⁺ ions
 - Cu cathode dips into a solution of Cu²⁺ ions
 - The external circuit consists of two wires connected to a voltmeter


Tracing the Flow of Electrons, (Cont'd)

3. As the half reactions occur

A surplus of positive ions builds up at the anode A surplus of negative ions builds up at the cathode Anions and cations must flow to balance charge

Salt Bridges


- The salt bridge is a gel-filled U-tube with a solution of a salt containing ions other than those involved in the redox reaction
 - KNO₃ is frequently used
 - Cations flow toward the cathode to neutralize the build-up of negative charge
 - Anions flow toward the anode to neutralize the build-up of positive charge

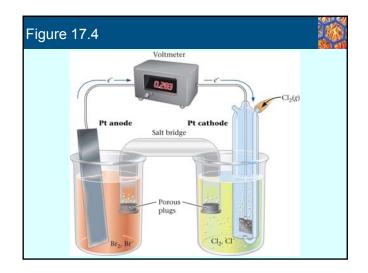
Shorthand Cell Notation

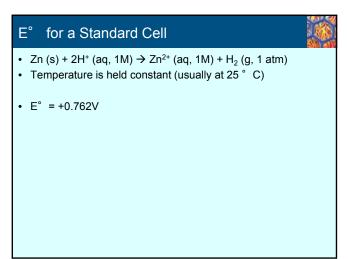
- Oxidation on the left
- Reduction on the right
- Single vertical line represents a phase boundary
 Liquid-metal or liquid-gas, etc.
- Double line is the salt bridge

 $Zn Zn^{2+} Cu^{2+} Cu$

Other Salt Bridge Cells

- Many spontaneous redox reactions can be set up as electrochemical cells
 - Ni (s) + Cu²⁺ (aq) \rightarrow Ni²⁺ (aq) + Cu (s)


 $Ni Ni^{2+} Cu^{2+} Cu^{2+}$


• Zn (s) + 2Co³⁺ (aq) \rightarrow Zn²⁺ (aq) + 2Co²⁺ (aq)

$$ZnZn^{2+}$$
 Co³⁺, Co²⁺ Pi

Note that because both species in the reduction are ions, an inert platinum electrode is required

Example 17.1	, (Cont'd)
	STRATEGY
1. Split the equation into two h	alf-reactions.
2. Recall that the anode	
 is where oxidation takes p 	lace.
• is the electrode toward wh	ich anions move.
• is where electrons are pro-	luced.
3. The cathode	
 is where reduction takes p 	lace.
· is the electrode toward wh	ich cations move.
 is where electrons are released. 	ased by the anode through an external circuit.
	SOLUTION
(a) Sketch of the cell	See Figure 17.4, where all the appropriate parts are labeled and the direction of electron flow is indicated.
(b) Half-reactions	cathode: $Cl_2(g) + 2e^- \longrightarrow 2Cl^-(aq)$ (reduction)
	anode: $2Br^-(aq) \longrightarrow Br_2(l) + 2e^-$ (oxidation)
(c) Balanced equation	$\operatorname{Cl}_2(g) + 2\operatorname{Br}^-(aq) \longrightarrow 2\operatorname{Cl}^-(aq) + \operatorname{Br}_2(I)$
(d) Abbreviated cell notation	Pt Br ₂ , Br ⁻ Cl ⁻ Cl ₂ Pt

Voltaic Cell Summary

- · A voltaic cell contains two half-cells
- Each half cell consists of an electrode dipping into an aqueous solution
- · In one half cell, the anode, oxidation occurs
- · In the other half cell, the cathode, reduction occurs

E° Oxidation and Reduction $E^{\circ} = E^{\circ}_{red} + E^{\circ}_{ox}$ • Zn (s) + 2H⁺ (aq, 1M) \rightarrow Zn²⁺ (aq, 1M) + H₂ (g, 1 atm) + 0.762V = $E^{\circ}_{red}(H^+ \rightarrow H_2) + E^{\circ}_{ox}(Zn \rightarrow Zn^{2+})$ • The value of E° cannot be measured for a half-cell • The value of E° for the hydrogen reduction is assigned to be 0.000 V • Therefore, the E° for the oxidation of zinc is +0.762

Standard Voltages

- The cell voltage is the driving force for an electrochemical reaction
 - Intensive property; independent of the number of electrons flowing through the cell
 - Depends on the nature of the redox reaction and on the concentration of species involved
- Standard voltages are measured with
 - All aqueous concentrations at 1M
 - The pressure of all gases at 1 atm

Standard Potentials

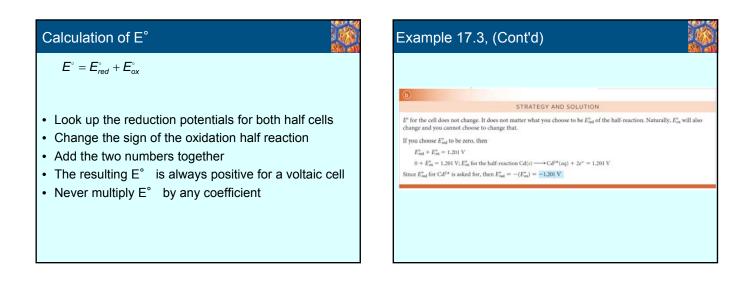
- Once the hydrogen half cell has been assigned a voltage of 0.000 V, other half cells can be measured relative to it
- Tables of standard potentials can be prepared
 - These are always *reduction* potentials, i.e., *E*^{*}_{red}
 - To obtain the oxidation potential, simply reverse the sign:
 - Zn^{2+} (aq) + 2e⁻ \rightarrow Zn (s) E_{red}° = -0.762V
 - Zn (s) → Zn²⁺ (aq) + 2e⁻ E^o_{ox} = +0.762V
- Standard voltages for oxidation and reduction are *equal in* magnitude and opposite in sign

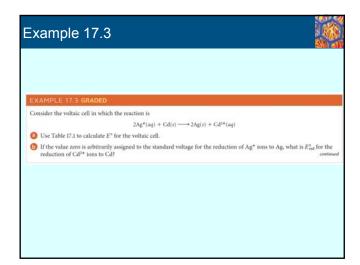
Strengths of Oxidizing and Reducing Agents

- In a table of reduction potentials
- · Oxidizing agents are located on the left side
 - The more positive E_{red}° is, the stronger the oxidizing agent • The strong oxidizing agents are on the bottom left of the table
- Reducing agents are located on the right side
 - The more negative *E*[°]_{red} is, the stronger the reducing agent
 The strong reducing agents are on the top right of the table

Table 17.1, (Cont'd) Table 17.1, (Cont'd) Table 17.1 Standard Potentials in Water Solution at 25°C Basic Solution, [OH'] = 1M Fe(OH)₂(s) + 2e⁻ Fe(S) + 2OH'(ag) - 0.891 2H₂O + 2e⁻ - H₂(g) + 2OH'(ag) - 0.891 P(OH)₂(s) + 2e⁻ - SFe(S) + 2OH'(ag) - 0.891 P(OH)₂(s) + 2e⁻ - SFe(S) + 2OH'(ag) - 0.891 P(OH)₂(s) + 2e⁻ - SFe(S) + 2OH'(ag) - 0.891 P(OH)₂(s) + 2e⁻ - SFe(GH)₂(s) + OH'(ag) - 0.891 P(OH)₂(s) + 2e⁻ - SFe(GH)₂(s) + OH'(ag) - 0.891 P(OH)₂(s) + 2e⁻ - SFe(GH)₂(s) + OH'(ag) - 0.890 P(OH)₂(s) + 2e⁻ - SFe(GH)₂(s) + OH'(ag) - 0.890 - SFe(GH)₂(s) + OH'(ag) - 0.890 - SFe(GH)₂(s) + OH'(ag) - 0.890 - SFe(GH)₂(s) + OH'(ag) - SFe(GH)₂(s) + 2e⁻ - SFe(GH)₂(s) + 2e⁻ - SFe(GH)₂

TABLE 17.1 Standard Potentia	Is in Water Solution at 25°C	
A	cidic Solution, [H ⁺] = 1 M	
		Elet (V)
Li*(og) + e*		-3.040
K*(qq) + e ⁻		-2.936
Ba2+(aq) + 2e-	+Ba(s)	-2.906
Ca ²⁺ (og) + 2e ⁻	+Ca(s)	-2.869
Na*(oq) + e*	+Na(s)	-2.714
Mg ²⁺ (aq) + 2e	→ Mg(s)	-2.357
Al ³⁺ (ag) + 3e ⁻		-1.68
Mn ²⁺ (aq) + 2e ⁻	+ Min(s)	-1.182
Zn ²⁺ (oq) + 2e ⁻	>Zn(s)	-0.762
$Cr^{3+}(aq) + 3e^{-}$	+Cr(s)	-0.744
$Fe^{2+}(aq) + 2e^{-}$	>Fe(s)	-0.409
$Ct^{2+}(aq) + e^{-}$ $Cd^{2+}(aq) + 2e^{-}$	+Cr ²⁺ (aq) +Cd(s)	-0.408
Cd="(dd) + 2e" PbSO ₄ (s) + 2e"	+Pb(s) + SO ₄ 2=(ad)	-0.356
TI*(00) + e"		-0.336
Co ^{2*} (ag) + 2e	+Co(s)	-0.282
N ²⁺ (ag) + 2e"		-0.236
$Agi(s) + e^{-}$		-0.152
 Sn²⁺(og) + 2e 	> Sn(s)	-0.141
Pb2+(og) + 2e-	Pb(s)	g -0.127
2H*(oq) + 2e-	+H ₂ (g)	0.000
AgBr(s) + e*	+ Ag(s) + Br^(aq)	0.073
S(s) + 2H*(aq) + 2e*	+H22(ad)	0.144
Sn ⁴⁺ (aq) + 2e ⁻	+ Sn ²⁺ (aq)	B 0.154
SO ₄ ²⁻ (aq) + 4H ⁺ (aq) + 2e ⁻	+SO ₂ (g) + 2H ₂ O	0.155
Cu ² *(aq) + e	+Cu*(aq)	0.161
Cu ² *(aq) + 2e ⁻	+Cu(s)	0.339
¥ Cu*(aq) + e*	+Cu(s)	0.518
$l_2(s) + 2e^-$ Fe ³⁺ (oq) + e ⁻		0.518 0.534 0.769
$H_{g_2}^{2*}(aq) + 2e^{-1}$		0.796
$Hg_{2}^{-1}(aq) + 2e^{-1}$ Ag ⁺ (aq) + e ⁻¹	$\rightarrow Ag(s)$	0.795


Trends in the Table Reducing agent strength decreases down the table Look on the right-hand side of the arrow for the reducing agent Oxidizing agent strength increases down the table Look at the left-hand side of the arrow for the oxidizing agent


	TABLE 17.1 Standard Potentials in W	ater Solution at 25°C		N 88 1
	Acidic S	olution, [H*] = 1 M		
			Elet (V)	
xx##.FVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV	$\begin{split} & A(G) + e^{-1} \\ & S(A) + e^{-1} \\ & S(A) + S(A) + S(A) + S(A) \\ & S(A) + S(A) + S(A) + S(A) + S(A) \\ & S(A) + S(A) + S(A) + S(A) + S(A) \\ & S(A) + S(A) + S(A) + S(A) \\ & S(A) + S(A)$			

EXAMPLE 17.2	CONCEPTUAL
Consider the follow	ring species in acidic solution: MnO4", 1", NO3", H28, and Fe ¹⁰ . Using Table 17.1,
Classify each of	f these as an oxidizing and/or reducing agent.
-	sidizing agents in order of increasing strength.
G do the same v	ith the reducing agents.
0	
	STRATEGY
Recall that the oxid of the same table.	izing agents are located in the left column of Table 17.1 and the reducing agents are in the right colu
	SOLUTION
MnO ₄ -	found in the left column, oxidizing agent
1-	found in the right column, reducing agent
NO,- H.S	found in the left column, oxidizing agent found in the right column, reducing agent
Fe ¹⁺	found in both the left column and right column, oxidizing and reducing agent
(b) and (c)	
	STRATEGY AND SOLUTION
Going down t	he left column, the oxidizing agents increase in strength.
Fe2* < N	0," < MnO ₄ "

0	
	STRATEGY
Assign oxidation number	s to each element so you can decide which element is reduced and which one is oxidized.
2. Write the oxidation and $E_{ox}^{\circ} = -(E_{red}^{\circ}).$	reduction half-reactions together with the corresponding $E^*_{\rm os}$ and $E^*_{\rm red}.$ Recall that
. Add both half-reactions (make sure you cancel electrons) and take the sum of E^a_{out} and E^a_{red} to obtain E^a for the cell.
	SOLUTION
. Oxidation numbers	Ag: $+1 \longrightarrow 0$ (reduction) Cd: $0 \longrightarrow +2$ (oxidation)
2. Half-reactions	$\begin{array}{l} 2Ag^{*}(aq) + 2e^{-} \longrightarrow 2Ag(s) & E_{red}^{*} = +0.799 \text{ V} \\ Cd(s) \longrightarrow Cd^{2+}(aq) + 2e^{-} & E_{ret}^{*} = -(E_{red}^{*}) = -(-0.402 \text{ V}) = +0.402 \text{ V} \end{array}$
E ⁰	$Cd(s) + 2Ag^{+}(aq) \longrightarrow Cd^{2+}(aq) + 2Ag(s)$ $E^{0} = 0.799 V + 0.402 V = 1.201 V$

	SOLUTION
1. oxidation numbers	Fe: $+3 \longrightarrow +2$ reduction i: $-1 \longrightarrow 0$ oxidation
2. half-reactions	$\begin{array}{ccc} 2\mathrm{Fe}^{\mathrm{i}*}(aq) + 2e^{-} & \longrightarrow 2\mathrm{Fe}^{2*}(aq) & E_{\mathrm{ed}}^{*} = +0.769 \ \mathrm{V} \\ 2\mathrm{I}^{-}(aq) & \longrightarrow \mathrm{I}_{2}(s) + 2e^{-} & E_{\mathrm{ea}}^{*} = -0.534 \ \mathrm{V} \end{array}$
E*	$E^* = 0.769 \text{ V} + (-0.534 \text{ V}) = +0.235 \text{ V}$ $E^* > 0$, the reaction will occur at standard conditions.
b	
	ANALYSIS
Information given:	oxidation half-reaction (Fe(s) \longrightarrow Fe ²⁺ (aq) + $2e^{-}$)
Information implied:	Table 17.1 (standard reduction potentials)
Asked for:	Will HCl oxidize Fe?
	STRATEGY
	ro ions, H* and Cl ⁻ . Since an oxidizing agent is needed (to oxidize Fe to Fe ¹⁺), find either H

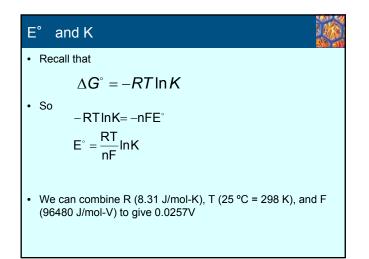
Spontaneity of Redox Reactions

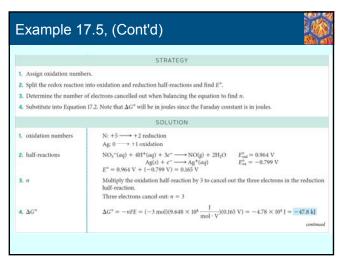
- If the calculated voltage of a redox reaction is positive, the reaction is spontaneous
- If the calculated voltage of a redox reaction is negative, the reaction is nonspontaneous

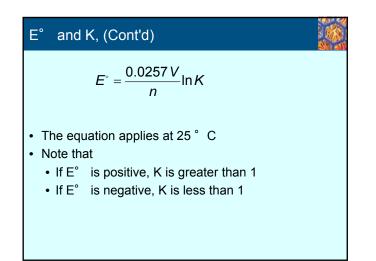
	SOLUTION	
1. Oxidizing agent	Only H* appears in the left column.	
2. Half-reactions	$2H^+(aq) + 2e^- \longrightarrow H_2(g)$ Fc(s) $\longrightarrow Fe^{2+}(aq) + 2e^-$	$E_{rad}^{o} = 0.000 \text{ V}$ $E_{rat}^{o} = 0.409 \text{ V}$
3. Redox reaction	$Fe(s) + 2H^+(aq) \longrightarrow Fe^{2+}(aq) + H_2(g)$ $E^0 > 0$, HCI will oxidize Fe at standard co	
O		
	ANALYSIS	
Information given:	ions in acidic solution (Cl ⁻ , Fe ²⁺ , Cr ²⁺ , I ₂)
Information implied:	Table 17.1	
Asked for:	Will a redox reaction occur when the ions	s are mixed?
	STRATEGY	
 Check the left column o reduction half-reactions 	(Table 17.1 to determine which of the ions are ox of the oxidizing agents.	idizing agents (i.e., they are reduced). Write the
	of Table 17.1 to determine which of the ions are n ons of the reducing agents.	reducing agents (i.e., they are oxidized). Write
 Write all possible combi E° values are possible. 	nations of oxidation and reduction half-reaction	s. The combination(s) that give positive
	n(s) for the reaction(s) that occur.	confirma

		55
EXAMPLE 17.4		
	from Table 17.1, decide whether at standard concentrations	
the reaction 2Fe ³⁺ (aq) + 21 ⁻ (aq) — will occur.	$\rightarrow 2Fe^{2s}(aq) + I_2(s)$	
Card State (State) and the state of the sta		
b Fe(s) will be oxidized to	o Fe ²⁺ by treatment with hydrochloric acid.	
G a redox reaction will or	o Fe ²⁺ by treatment with hydrochloric acid. ccur when the following species are mixed in acidic solution: CI ⁻ , Fe ²⁺ , Cr ²⁺ , I ₂ .	
	ccur when the following species are mixed in acidic solution: ${\rm Cl}^-, {\rm Fe}^{2*}, {\rm Cr}^{2*}, I_2,$	
G a redox reaction will or		
G a redox reaction will or	ccur when the following species are mixed in acidic solution: ${\rm Cl}^-, {\rm Fe}^{2*}, {\rm Cr}^{2*}, I_2,$	
 a redox reaction will or 	ccur when the following species are mixed in acidic solution: Cl^-, $Fe^{1 \mu}, Cr^{2 \mu}, I_2,$ ANALYSIS	
a redox reaction will or a	ccur when the following species are mixed in acidic solution: CI^- , Fe^{1+} , CI^{2+} , I_2 . ANALYSIS equation for the reaction $(2Fe^{1+}(aq) + 2I^-(aq) \longrightarrow 2Fe^{1+}(aq) + I_2(s))$	
a redox reaction will or anothermation given: Information implied:	ccur when the following species are mixed in acidic solution: CI^- , Fe^{1+} , Cr^{2+} , I_2 . ANALYSIS equation for the reaction $(2Fe^{1+}(aq) + 2I^-(aq) \longrightarrow 2Fe^{1+}(aq) + I_2(s))$ Table 17.1 (standard reduction potentials)	
a redox reaction will or anothermation given: Information implied:	ccur when the following species are mixed in acidic solution: Cl^- , Fe^{l+} , Cr^{l+} , I_p . ANALYSIS equation for the reaction $(2Fe^{l+}(aq) + 2l^-(aq) \longrightarrow 2Fe^{l+}(aq) + I_2(s))$ Table 17.1 (standard reduction potentials) Will the reaction occur? STRATEGY	

	SOLUTION		
 Oxidizing agents 	$\begin{array}{l} \operatorname{Fe}^{2+}(aq) + 2e^{-} \longrightarrow \operatorname{Fe}(s) \\ \operatorname{I}_{2}(s) + 2e^{-} \longrightarrow 2\operatorname{I}^{-}(aq) \end{array}$	$E_{rot}^a = -0.409 \text{ V}$ $E_{rot}^a = +0.534 \text{ V}$	
 Reducing agents 	$\begin{array}{l} 2CI^-(aq) \longrightarrow Cl_2(g) + 2e^-\\ Cr^{2+}(aq) \longrightarrow Cr^{2+}(aq) + e^-\\ Fe^{2+}(aq) \longrightarrow Fe^{3+}(aq) + e^- \end{array}$	$E_{ex}^{a} = -1.360 \text{ V}$ $E_{ex}^{0} = +0.408 \text{ V}$ $E_{ex}^{b} = -0.769 \text{ V}$	
3. Possible combinations	$Fe^{2*} + Cl^{-}$; $E^{0} < 0$ $Fe^{2*} + Cr^{2+}$; $E^{0} < 0$ $Fe^{2*} + Fe^{2+}$; $E^{0} < 0$	$ \begin{array}{l} I_2 + CI^-: E^0 < 0 \\ I_2 + Cr^{2+}: E^0 > 0 \\ I_2 + Fe^{2+}: E^0 < 0 \end{array} $	
4. Redox reaction	$I_2(s) + 2Cr^{2+}(aq) \longrightarrow 2I^-(aq) + 2Cr^{3+}(aq)$	$E^{+} = 0.942 \text{ V}$	


Relations Between E, $\Delta G^\circ~$ and K


- There is a relationship between the spontaneity of the reaction in a voltaic cell, the free energy change, and therefore the equilibrium constant
- E° and ΔG°


$$\Delta G^{\circ} = -nFE^{\circ}$$

- $\Delta G^\circ\,$ is the standard free energy change (gases, 1 atm; solutions, 1 M)
- E° is the standard cell voltage
- n is the number of moles of electrons transferred in the reaction
- F is called the Faraday constant, the charge on a mole of electrons

EXAMPLE 17.5		
use Table 17.1 to calculate, a ΔG° \bigcirc K	$\begin{split} H^{+}(aq) &\longrightarrow 3Ag^{+}(aq) + NO(g) + 2H_2O \\ \text{it } 25^{\circ}C, \end{split}$	
•	ANALYSIS	
Information given:	reaction: $(3Ag(s) + NO_3^-(aq) + 4H^*(aq) \longrightarrow 3Ag^*(aq) + NO(g) + 2H_2O)$ temperature (25°C)	
Information implied:	Table 17.1 (standard reduction potentials) Faraday constant (F)	
Asked for:	ΔG^{a}	

ABLE 17.2 E° (V)	Relation Betwee	een E° , K, and ΔG° (kJ)	$\Delta G^{\circ} (n = 2)$ $E^{\circ} (\vee)$	к	∆G° (kJ)
+2.00	4×10^{67}	-400	-2.00	3 × 10 ⁻⁶⁸	+400
+1.00	6 × 10 ³³	-200	-1.00	2 × 10 ⁻³⁴	+200
+0.50	8×10^{16}	-100	-0.50	1×10^{-17}	+100
+0.25	3 × 10 ⁸	-50	-0.25	4×10^{-9}	+50
+0.10	2×10^{3}	-20	-0.10	0.0004	+20
+0.05	50	-10	-0.05	0.02	+10
0.00	1	0			

Voltaic Cell and Equilibrium

- As a voltaic cell operates, the concentration of reactant decreases and the concentration of product increases
 - Eventually the forward and reverse reactions come to equilibrium
 - Once equilibrium is reached, there is no net driving force

E° and Extent of Reaction

- As there is with $\Delta G^\circ\,$, there is clearly a connection between $E^\circ\,$ and the position of equilibrium
 - If $E^\circ~$ is greater than 0.10 V, the reaction goes largely to completion (K is large)
 - If E° is less than -0.10 V, the reaction does not proceed to any appreciable extent (K is small)

The Nernst Equation • Recall that $\Delta G = \Delta G^{\circ} + RT \ln Q$ • We can substitute for E° and obtain $E = E^{\circ} - \frac{RT}{nF} \ln Q$ $-nFE = -nFE^{\circ} + RT \ln Q$ $E = E^{\circ} - \frac{0.0257V}{n} \ln Q$

Effect of Concentration on Voltage

- Since there is clearly an effect of concentration on ΔG° , there is a concentration effect on E° as well • Voltage will increase if
 - The concentration of reactant is increased
 - The concentration of product is reduced
- · Voltage will decrease if
 - The concentration of reactant is decreased
 - The concentration of product is increased

Interpreting Q in the Nernst Equation

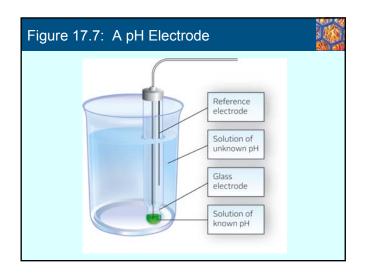
- If Q > 1, product concentrations are higher than those of reactants
 - E is less than E°
- If Q < 1, reactant concentrations are higher than those of products
 - E is greater than E°
- If Q = 1, standard conditions prevail
 - E = E°

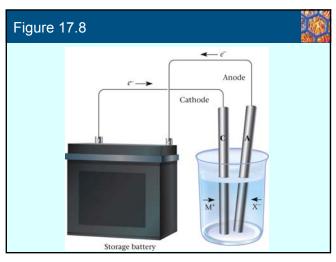
Example 17.6 Example 17.6 Consider a voltaic cell in which the following reaction occurs: $O_2(g, 0.98 \text{ atm}) + 4H^*(ap, pH = 1.24) + 4Br^{-}(ap, 0.15 M) \longrightarrow 2H_2O + 2Br_2(l)$ Calculate *E* for the cell at 25°C. When the voltaic cell is at 35°C, *E* is measured to be 0.039 V. What is *E*^{*} at 35°C? continued

Example	e 17.6, (Cont'd)	
	SOLUTION	
E	$0.039 \text{ V} = E^{0} - \frac{(8.31 \text{ J/mol} \cdot \text{K})(308 \text{K})}{4 (9.648 \times 10^{4} \text{ J/mol} \cdot \text{V})} \ln (1.8 \times 10^{8})$	
	$E^{\circ} = 0.039 \text{ V} + 0.126 \text{ V} = 0.165 \text{ V}$	

0		
	ANALYSIS	
Information given:	reaction: $(O_t(g) + 4H^*(aq) + 4Br^-(aq) \longrightarrow 2Br_2(l) + 2H_gO)$ $P_{O_t}(0.98 \text{ atm}); [H^+] (pH = 1.24); [Br^-] (0.15 M)$ temperature (25°C)	
Information implied:	Table 17.1 (standard reduction potentials)	
Asked for:	Ε	
	STRATEGY	
3. Find E° . $(E^{\circ}_{red} + E^{\circ}_{ax})$	find Q. rs, write oxidation and reduction half-reactions, and cancel electrons to find n. st equation (Equation 17.4) for $T=25^{\circ}C$	

xample 17	.1
EXAMPLE 17.7	
Consider a voltaic cell at 25	°C in which the reaction is
	$Zn(s) + 2H^{*}(aq) \longrightarrow Zn^{2*}(aq) + H_{2}(g)$
It is found that the voltage	is +0.560 V when $[\rm Zn^{2+}]=0.85~{\it M}$ and $P_{\rm H_2}=0.988$ atm. What is the pH in the $\rm H_2$ -H half-cell?
	ANALYSIS
Information given:	reaction: $(Zn(s) + 2H^*(aq) \longrightarrow Zn^{2*}(aq) + H_2(g))$ $E(0.560 V); T(25^{C}C)$ $P_{16}(.988 atm); (Zn^{2*}(0.85 M)$ temperature $(25^{*}C)$
Information implied:	Table 17.1 (standard reduction potentials)
Asked for:	pH
	STRATEGY
2. Find E° . $(E^{\circ}_{rad} + E^{\circ}_{ox})$	rs, write oxidation and reduction half-reactions, and cancel electrons to find <i>n</i> . st equation (Equation 17.4) for $T = 25^{\circ}$ C and find <i>Q</i> .
4. Write the O expression a	and substitute given concentrations and pressures to find [H+]. Change [H+] to pH.
a structure & capitosion i	continue


an	nple 17.6,	(Cont'd)	
		SOLUTION	
	L [H*]	$1.24 = -\log_{10}[H^{+}]_1[H^{+}] = 0.058 M$	
	Q	$Q = \frac{1}{(P_{\alpha,i}][H^+]^i[Br^-]^i} = \frac{1}{(0.98)(0.058)^4(0.15)^4} = 1.8 \times 10^8$	
	 Oxidation numbers 	O: $0 \longrightarrow -2$ (reduction); Br: $-1 \longrightarrow 0$ (oxidation)	
	Half-reactions	$O_2(g) + 4H^*(aq) + 4e^-(aq) \longrightarrow 2H_2O$ $2Be^-(aq) \longrightarrow Be_1(l) + 2e^-$	
	*	The oxidation half-reaction must be multiplied by 2 to cancel out the four electrons in the reduction half-reaction. $n = 4$	
	3. E*	E_{ind}^{*} for O ₂ = 1.299 V; E_{ind}^{*} for Br ⁻ = -1.077 V E^{+} = 1.229 V + (-1.077 V) = 0.152 V	
	4. E	$E = 0.152 \text{ V} - \frac{0.0257}{4} \ln (1.8 \times 10^6) = 0.030 \text{ V}$	
	•		
		ANALYSIS	
	Information given:	E (0.039 V) at T (35°C) From part (a): Q (1.8 × 10 ⁹); π (4 moles)	
	Information implied:	R and F values in joules	
	Asked for:	E° at 35°C	
		STRATEGY	
	Substitute into the Nernst e $E = F^* - \frac{RT}{nF} \ln Q$	quation for any T.	

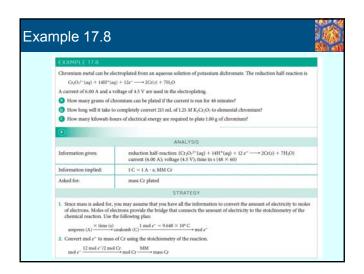

	SOLUTION	
L Oxidation numbers	$Zn: 0 \longrightarrow +2$ oxidation; $H^+: +1 \longrightarrow 0$ reduction	
Half-reactions	$2H^+(aq) + 2e^- \longrightarrow H_2(g)$ $Zn(s) \longrightarrow 2e^- + Zn^{2+}(aq)$	
п	2 electrons cancel out so $n = 2$.	
2. E ^o	$E^{0} = E_{ex}^{0} \operatorname{Zn} + E_{ext}^{0} \operatorname{H}^{+} = 0.762 \operatorname{V} + 0 \operatorname{V} = 0.762 \operatorname{V}$	
3. Q	$E = E^{\circ} - \frac{0.0257}{n} \ln Q; 0.560 \text{ V} = 0.762 \text{ V} - \frac{0.0257}{2} \ln Q$	
	$\frac{0.0257}{2} \ln Q = 0.762 \text{ V} - 0.560 \text{ V}; \ln Q = 15.7; Q = 6.7 \times 10^{6}$	
4. [H*]	$Q = \frac{[Zn^{2+}](P_{H_i})}{[H^+]^2}; [H^+] = \left[\frac{(0.85)(0.988)}{6.7 \times 10^6}\right]^{\frac{1}{2}} = 3.5 \times 10^{-4}$	
pH	$pH = -log_{10} (3.5 \times 10^{-4}) = 3.45$	

pH and Specific Ion Electrodes

- Glass electrodes can be constructed such that the difference in concentration of ion inside and outside the electrode may be measured
 - pH meter electrodes
 - Specific ion electrodes

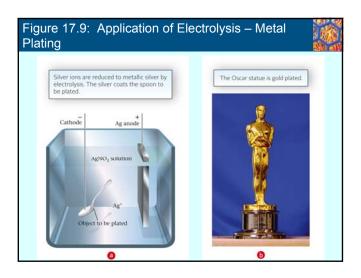
Quantitative Relationships• $Ag^+ (aq) + e^- \rightarrow Ag (s)$
 • 1 mol $e^- \rightarrow 1$ mol Ag• $Cu^{2+} (aq) + 2e^- \rightarrow Cu (s)$
 • 2 mol $e^- \rightarrow 1$ mol Cu• $Au^{3+} (aq) + 3e^- \rightarrow Au (s)$
 • 3 mol $e^- \rightarrow 1$ mol Au

Electrolytic Cells


- In an *electrolytic cell*, a nonspontaneous reaction may be caused to occur by the application of an external voltage
 - In essence, this means pumping electrons into the reaction
 - The process is called *electrolysis*

able 17	17.3		
ABLE 17.3	Electrical Units		
Quantity	Unit	Defining Relation	Conversion Factors
Charge	coulomb (C)	1 C = 1 A · s = 1 J/V	$1 \mod e^- = 9.648 \times 10^4 \text{ C}$
Current	ampere (A)	1 A = 1 C/s	
Potential	volt (V)	1 V = 1 J/C	
	watt (W)	1 W = 1 J/s	
Power			

Electrical Units


- Charge
 - 1 mol electrons = 96,480 coulombs (of charge)
- Current
 - 1 *ampere* = 1 coulomb/sec
- Electrical energy
 - 1 joule = 1 C·V
 - 1 kWh = $3.600 \times 10^6 \text{ J} = 3.600 \times 10^3 \text{ kJ}$

	STRATEGY
stoichiometry of th $V \times M \longrightarrow mol$ 2. Convert mol e^- to mol e^-	$\operatorname{Cr}_2\operatorname{Or}_2^{2^m} \xrightarrow{12 \mod e^m/1 \mod \operatorname{Cr}_2\operatorname{Or}_2^{2^m}} \mod e^m$
	SOLUTION
 mol e C Time 	$ \begin{array}{l} (0.215 \ \text{L})(1.25 \ \text{mol}L)(12 \ \text{mol}\ e^{-}/\text{mol}\ Cr_{4}\text{O}_{7}^{2-}) = 3.225 \ \text{mol}\ e^{-} \\ 3.225 \ \text{mol}\ e^{-} \times \frac{9.648 \times 10^{4} \ \text{C}}{1 \ \text{mol}\ e^{-}} = 3.11 \times 10^{5} \ \text{C} \\ \\ \text{time} = \frac{3.11 \times 10^{5} \ \text{C}}{6.00 \ C/8} = 5.16 \times 10^{4} \ \text{s} = [4.4 \ \text{h}] \end{array} $

	ANALYSIS	
Information given:	reduction half reaction: (Cr_QO, ²⁻ (ag) + 14H ⁺ (ag) + 12 e ⁻ \longrightarrow 2Cr(s) + 7H ₂ O) current (6.00 A), voltage (4.5 V) mass C (1.00 g)	
Information implied:	$1 \; A \; - \; 1 \; C / s_{\rm C} \; 1 \; kWh \; = \; 3.600 \; \times \; 10^6 \; j_{\rm C} \; 1 \; J \; = \; 1 \; C \; \cdot \; V$ MM for Cr	
Asked for:	kilowatt-hours	
STRATEGY		
mass Gr MM mol	$\begin{split} r & \text{in } \text{of } e^{-u} \min_{i} \text{ so in } \text{d} e^{-u} \text{ mol } e^{-u} \\ & \frac{1}{2} \min_{i} \text{ cond} (\text{if } 2 \mod e^{-u}) \text{ and } \text{ hen convert } \text{in } \text{kWh} (3.600 \times 10^6 \text{ J} = 1 \text{ kWh}) \\ & \text{ de energy in } \text{ poles } (\mathbb{C} \times \mathbb{V}) \text{ and then convert } \text{ to } \text{kWh} (3.600 \times 10^6 \text{ J} = 1 \text{ kWh}) \\ & \text{ des } \times 10^6 \text{ C} \text{ coolomb} (\mathbb{C}) \overset{V}{\longrightarrow} \mathbb{C} \cdot \mathbb{V} \longrightarrow \text{J} \longrightarrow \text{kWh} \end{split}$	
	SOLUTION	
1. mol e*	$1.00 \text{ g Cr} \times \frac{1 \text{ mol Cr}}{52.00 \text{ g}} \times \frac{12 \text{ mol } \text{ c}^{-}}{2 \text{ mol Cr}} = 0.115$	
z. kWh	$0.315 \text{ mol } e^- \times \frac{9.468 \times 10^6 \text{ C}}{1 \text{ mol } e^-} \times 4.5 \text{ V} \times \frac{11}{1 \text{ C} \cdot \text{V}} \times \frac{1 \text{ kWh}}{3.660 \times 10^6 \text{ J}} = [0.014 \text{ kWh}]$	
	END POINTS	
 Note that whether you can get to moles of ele 	are given data to determine the moles of a species in a reaction or the coulombs of electricity, you crons.	
2. The value given for the	e voltage used is irrelevant for parts (a) and (b). You only need it to find the number of kilowatt	

	SOLUTION	
1. mol e ⁻	6.00 A = 6.00 C/s	
	$6.00 \frac{C}{s} \times (48 \times 60) s \times \frac{1 \text{ mol } \epsilon^{\ast}}{9.648 \times 10^{4} \text{ C}} = 0.179 \text{ mol } \epsilon^{\ast}$	
2. Mass Cr	$0.179 \text{ mol } e^- \times \frac{2 \text{ mol } Cr}{12 \text{ mol } e^-} \times \frac{52.00 \text{ g } Cr}{1 \text{ mol } Cr} = \frac{1.55 \text{ g}}{1.55 \text{ g}}$	
b		
	ANALYSIS	
Information given:	reduction half-reaction: $(Cr_2O_i^{2-}(aq) + 14H^+(aq) + 12e^- \longrightarrow 2Cr(s) + 7H_2O)$ current (6.00 Å); voltage (4.5 V) $K_3Cr_2O_i$: V (0.215 L); M (1.25)	
Information implied:	$1 \text{ C} = 1 \text{A} \cdot \text{s}$	
Asked for:	time com	tinued

Cell Reactions in Water Solution

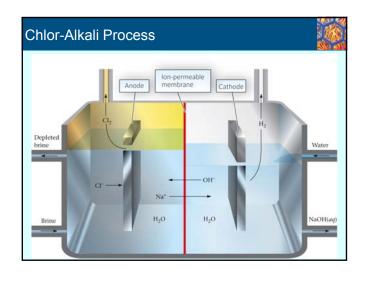
- · Reactions at the cathode
 - Reduction of a cation to its metal
 Ag⁺ (aq) + e⁻ → Ag (s)
 - Ag⁺ (aq) + e⁻ \rightarrow Ag (s) +0.799V • Reduction of water to hydrogen gas
- $2H_2O + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$ -0.828V • Anode reactions
 - Oxidation of an anion to a nonmetal

 2l⁻ (aq) → l₂ (s) + 2e⁻
 -0.534V
 - Oxidation of water to oxygen gas

 2H₂O → O₂ (g) + 4H⁺ (aq) + 4e⁻
 -1.299V

Electrolysis of Aqueous KI

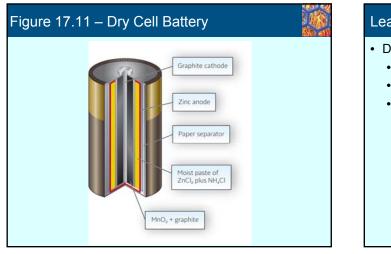
- Hydrogen gas (color from phenolphthalein, indicating the presence of OH⁻) is produced at the cathode
- lodine is produced at the anode


Which Reaction

- Water will be reduced when a cation is very difficult to reduce
 - K⁺, Na⁺, etc.
- Water will be oxidized when an anion is very difficult to oxidize
 - NO3⁻, SO4²⁻, etc.

Commercial Cells

- Electrolysis of aqueous NaCl
 - Anode: $2CI^{-} \rightarrow CI_{2}(g) + 2e^{-}$
 - Cathode: $2H_2O + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$
- Products
 - Chlorine: bleaching agent; used in manufacture of plastics such as PVC
 - Hydrogen: used to produce ammonia
 - NaOH: used to process paper, purify aluminum, manufacture glass


ABLE 17.4 Electrolysis of Water Solutions		
Solution	Cathode Product	Anode Product
CuBr ₂ (aq)	Cu(s)	Br ₂ (/)
AgNO₃(aq)	Ag(s)	$O_2(g)$
KI(aq)	$H_2(g)$	l ₂ (s)
Na2SO4(aq)	$H_2(g)$	$O_2(g)$

Primary Cells

- Primary cells (batteries) are non-rechargeable
- · LeClanché cells
 - Zn (s) + 2MnO₂ (s) + 2NH₄⁺ (aq) \rightarrow Zn²⁺ (aq) + 2NH₃ (aq) + H₂O
 - Gas is produced (insulator)
- Alkaline batteries
 - Use KOH rather than NH_4CI electrolyte
 - $Zn(s) + 2MnO_2(s) \rightarrow ZnO(s) + Mn_2O_3(s)$
 - · No gas is produced

Lead Storage Battery Disadvantages Relatively low energy density (heavy!) Capacity is about 2.5 W-hr/kg When the battery is recharged, some water may be electrolyzed, producing a safety hazard 2H₂O → H₂ (g) + O₂ (g) ΔG° = +474.4 kJ at 25° C

Storage (Rechargeable) Cells

- · Secondary battery
- · Can be recharged repeatedly
 - · Cell is run in reverse (polarity is reversed)
- · Examples
 - · Lead-acid cell: six, 2.0 V lead cells
 - Pb (s) + PbO₂ (s) + 2H⁺ (aq) + 2HSO₄⁻ (aq) → 2PbSO₄ (s) + 2H₂O
 - ΔG° = -371.4 kJ at 25° C

Nickel-based Batteries

- NiCad batteries
 - Anode is Cd
- Cathode is nickeloxy hydroxide
- · Nickel-metal hydride batteries
 - · Anode is an alloy of several metals
 - Cathode is nickeloxy hydroxide
- · Capacity is 80 W-hr/kg

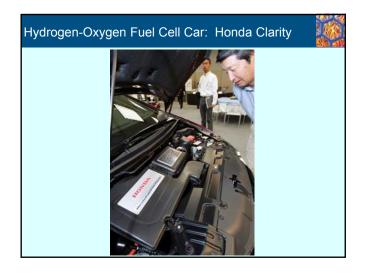
Lithium-based Batteries

- Lithium batteries provide high voltages with light weight
 - Anode is made up of carbon layers with lithium ions embedded in them
 - Cathode is a lithium metal oxide like LiCoO2
- · Capacity is 150 W-hr/kg

Fuel Cells in Practice

- · Clean, non-polluting
- Cost per kJ is high: chemistry is simple but the engineering is complex
- Storage of hydrogen as a fuel is difficult and potentially dangerous

Fuel Cells


- A fuel cell is essentially a battery with continuously supplied reactants
- Anode: 2H₂ (g) + 4OH⁻ (aq) →4H₂O + 4e⁻
- Cathode: $O_2(g) + 2H_2O + 4e^- \rightarrow 4OH^-$ (aq)
- Net: $2H_2(g) + O_2(g) \rightarrow 2H_2O \Delta G^\circ = -474.4 \text{ kJ at } 25^\circ \text{ C}$

Key Concepts

- 1. Draw a diagram for a voltaic cell, labeling the electrodes and diagramming current flow
- 2. Use standard potentials to Compare relative strengths of oxidizing and reducing agents

Calculate E and/or reaction spontaneity

- 3. Relate E° to ΔG° and K
- 4. Use the Nernst equation to relate voltage to concentration
- 5. Relate mass of product to charge, energy or current in electrolysis reactions

