

Chemistry

- Chemistry is concerned with matter and energy and how the two interact with each other
- · Chemistry is a foundation for other disciplines
 - Engineering
 - · Health sciences
 - Pharmacy and pharmacology
 - Scientific literacy

Current Issues with Chemical Relevance

- · Chemistry-related issues
 - Depletion of the ozone layer
 - Alternative sources of fuel
 - Nuclear energy

Outline

- Matter
- Measurements
- · Properties of substances

Matter

- Matter has mass
 - · Weight is what we normally consider
- Matter occupies space
- · Phases of matter
 - · Solids
 - Fixed volume and shape
 - · Liquids
 - · Fixed volume, indefinite shape
 - Gases
 - Indefinite shape and volume

Matter

- Pure substances
 - · Fixed composition
 - Unique set of properties
- Mixtures
 - Two or more substances in some combination

Elements

- Elements cannot be broken down into two or more pure substances
 - 115 elements; 91 occur naturally
- Common elements
 - Carbon (found in charcoal)
 - · Copper (found in pipes, jewelry, etc.)
- Rare elements
 - Gold
 - Uranium

Atom	in C	's m	ha	
Αισπ	10 3	sviii	DO	15

- · Elements are given symbols
 - · Chemical identifier
 - Elements known to ancient times often have symbols based on Latin names
 - Copper, Cu (cuprum)
 - Mercury, Hg (hydrargyrum)
 - Potassium, K (kalium)
 - One element has a symbol based on a German name
 - Tungsten, W (wolfram)

Table 1.1	Some Familiar Elements with Their Percentage Abundances					
Element	Symbol	Percentage Abundance	Element	Symbol	Percentage Abundance	
Aluminum	AI	7.5	Manganese	Mn	0.09	
Bromine	Br	0.00025	Mercury	Hg	0.00005	
Calcium	Ca	3.4	Nickel	Ni	0.010	
Carbon	C	0.08	Nitrogen	N	0.03	
Chlorine	CI	0.2	Oxygen	0	49.4	
Chromium	Cr	0.018	Phosphorus	P	0.12	
Copper	Cu	0.007	Potassium	к	2.4	
Gold	Au	0.0000005	Silicon	Si	25.8	
Hydrogen	н	0.9	Silver	Ag	0.00001	
lodine	1	0.00003	Sodium	Na	2.6	
Iron	Fe	4.7	Sulfur	S	0.06	
Lead	Pb	0.0016	Titanium	Ti	0.56	
Magnesium	Mg	1.9	Zinc	Zn	0.008	

Compounds

- Compounds are combinations of two or more elements
 - · Carbon and hydrogen
 - Hydrocarbons
 - Methane, acetylene, naphthalene
 - Different proportions of each element

Composition of Compounds

- Compounds always contain the same elements in the same composition by mass
 - · Water by mass:
 - 11.19% hydrogen
 - 88.81% oxygen
- Properties of compounds are often very different from the properties of elements from which the compounds form

Resolving compounds into elements

- · Many methods
 - Heating mercury(II) oxide releases mercury, Hg, and oxygen, O
 - Priestley, 200 years ago
 - Aluminum
 - Not known until about 100 years ago
 - Difficult to resolve aluminum from rocks and minerals where it is commonly found
 - Electrolysis is required to prepare aluminum from its compounds

Mixtures

- Two or more substances in such a combination that each substance retains a separate chemical identity
 - Copper sulfate and sand
 Identity of each is retained
 - Contrast with the formation of a compound
 Sodium and chlorine form sodium chloride

Mixtures

- Homogeneous mixtures
 - Uniform
 - · Composition is the same throughout
 - Example: seawater
- · Heterogeneous mixtures
 - Not uniform
 - Composition varies throughout
 - Example: rocks

Solutions

- Common heterogeneous mixture
- Components
 - Solvent
 - · Most commonly a liquid
 - Solute
 - · May be solid, liquid or gas
- Seawater
 - · Water is the solvent
 - · Solutes are variety of salts

Separating Mixtures

- Filtration
 - · Separate a heterogeneous solid-liquid mixture
 - Barrier holds back one part of the mixture and lets the other pass
 - Filter paper will hold back sand but allow water to pass through
- Distillation
 - · Resolves homogeneous mixtures
 - Salt water can be distilled, allowing water to be separated from the solid salt

- Separation of mixtures in industry and research
 - Many mixtures can be separated by chromatography
 - Gas mixtures
 - Liquid mixtures

Forensic Chemistry

- Forensic chemistry is the study of materials or problems where evidence is sought for criminal or civil cases tried in court
 - Chromatography is a fundamental tool of forensic chemistry
 - Biochemistry relies heavily on chromatography and on mass spectrometry, which we will briefly examine in Chapter 2

Measurements

Quantitation

- · Identify the amount of substance present
- Chemistry is a quantitative science
- Measurement
 - Needed to quantify the amount of substance present
 - SI, the international system of measurements
 - Common name: the metric system

Metric System

- · Based on the decimal
 - · Powers of ten
 - Four units
 - Length
 - Volume
 - Mass
 - Temperature

Table 1.	2 Metric	Prefixes			
Factor	Prefix	Abbreviation	Factor	Prefix	Abbreviation
10 ⁶	mega	М	10-3	milli	m
10 ³	kilo	k	10-6	micro	μ
10-1	deci	d	10-9	nano	n
10-2	centi	С	10-12	pico	p

Instruments and Units

- · Length
 - In the SI system, the unit of length is the meter
 - A meter is slightly longer than a yard
 - Precise definition is the distance light travels in 1/299,272,248 of one second
- Volume
 - · Volume is related to length
 - Units of volume
 - Cubic centimeters
 - Liters
 - Milliliters
 - 1 mL = 1 cm³

Table 1. Metric	Relations B	etween Length, Volume, a English		and Mass Units Metric-English	
Length					7 2
1 km	= 10 ³ m	1 ft	= 12 in	1 in	= 2.54 cm*
1 cm	= 10 ⁻² m	1 vd	= 3 ft	1 m	= 39.37 in
1 mm	$= 10^{-3} m$	1 mi	= 5280 ft	1 mi	= 1.609 km
1 nm	$= 10^{-9} m = 10 \text{\AA}$				
Volume					
1 m ³	$= 10^{6} cm^{3} = 10^{3} L$	1 gal	= 4 qt = 8 pt	1 ft ³	= 28.32 L
1 cm ³	$= 1 \text{ mL} = 10^{-3} \text{ L}$	1 qt (U.S. liq)	= 57.75 in ³	1 L	= 1.057 qt (U.S. liq
Mass					
1 kg	$= 10^3 g$	1 lb	= 16 oz	1 lb	= 453.6 g
1 mg	$= 10^{-3} g$	1 short ton	= 2000 lb	1 g	= 0.03527 oz
1 metric ton	$= 10^{3} \text{ kg}$			1 metric ton	= 1.102 short ton

Measuring volume

- · Graduated cylinder
- · Pipet or buret
 - Used when greater accuracy is required

Mass

- · In the metric system, mass is expressed in grams
- · Powers of ten modify the unit
 - Milligrams, 0.001 g
 - Kilograms, 1000 g

Temperature

- · Factor that determines the direction of heat flow
- · Temperature is measured indirectly
 - Observing its effect on the properties of a substance
 - Mercury in glass thermometer
 - Mercury expands and contracts in response to temperature
 - Digital thermometer
 - · Uses a device called a thermistor

Temperature Units

- Degrees Celsius
 - Until 1948, degrees centigrade
- On the Celsius scale
 - Water freezes at 0 °C
 - Water boils at 100 $\,^\circ\text{C}$

The Fahrenheit Scale

- On the Fahrenheit scale
- Water freezes at 32 °F
 - Water boils at 212 °F
- · Comparing scales
 - 0 C is 32 °F
 - + 100 C is 212 $^\circ\text{F}$
 - There are 180 F for 100 °C, so each °C is 1.8 times larger than each °F

The Kelvin Scale

- · The Kelvin is defined as
 - 1/273.16 of the difference between the lowest attainable temperature (0 K) and the triple point of water (0.01 $\,^\circ\text{C})$
 - Unlike the other two scales, no degree sign is used to express temperature in K

Uncertainties in Measurements

- Significant Figures
 - · Every measurement carries uncertainty
 - All measurements must include estimates of uncertainty with them
 - There is an uncertainty of at least one unit in the last digit

Uncertainty in Measuring Volume

Three volume measurements with their uncertainties

- Large graduated cylinder, 8 ± 1 mL
- Small graduate cylinder, 8.0 \pm 0.1 mL
- Pipet or buret, 8.00 ± 0.01 mL
- · Text convention
 - Uncertainty of ± in the last digit is assumed but not stated

Ambiguity in Significant Figures

- · Consider the measurement, 500 g
 - If the measurement was made to the nearest 1 g, all three digits are significant
 - If the measurement was made to the nearest 10 g, only two digits are significant
 - · Resolve by using scientific notation
 - 5.00 X 10² g
 - 5.0 X 10² g

 $8.2\times 10^2\,\text{km/h}.$

Rounding

- Rounding off numbers
 - If the first digit to be discarded is **5** or greater, round up
 - If the first digit to be discarded is *4 or smaller*, *round down*

Significant Figures in Addition and Subtraction

- · When two numbers are added or subtracted
 - Perform the addition(s) and/or subtraction(s)
 - Count the number of decimal places in *each number*
 - Round off so that the resulting number has the same number of decimal places as the measurement with the greatest uncertainty (i.e., the fewer number of decimal places).

Significant Figures in Multiplication and Division

- When multiplying or dividing two numbers, the result is rounded to the number of significant figures in the less (or least in the case of three or more) measurements
- 2.40 X 2 = 5

	hd-re	Unantalista	
	IVIASS	t 0.01 -	a destined also as
Instant corree Sugar	10.21 g D.2 g	± 0.01 g + 0.1 a	z decimal places 1 decimal place
Water	256 g	= 1 g	0 decimal places
Total mass	266 g		

Exact Numbers

- 20
- Some numbers carry an infinite number of significant figures
- These are exact numbers
- Exact numbers do not change the number of significant figures in a calculation
- The numbers 1.8 and 32 in the conversion between Fahrenheit and Celsius temperature are exact:

$$t_{\circ_F} = 1.8t_{\circ_C} + 32^{\circ}$$

More on Exact Numbers

- In some problems in the text, numbers will be spelled out in words
- "Calculate the heat evolved when one kilogram of coal burns"
- · Consider these numbers to be exact

Dimensional Analysis

- In many cases throughout your study of chemistry, the units (dimensions) will guide you to the solution of a problem
- Always be sure your answer is reported with both a number and a set of units!

Converting Units

- Conversion factors are used to convert one set of units to another
 - · Only the units change
 - Conversion factors are numerically equal to 1
 1L = 1000 cm³

$$\frac{1L}{1000 \text{ cm}^3} = \frac{1000 \text{ cm}^3}{1000 \text{ cm}^3} = 1$$

Choosing a conversion factor

- Choose a conversion factor that puts the initial units in the denominator
 - · The initial units will cancel
 - · The final units will appear in the numerator

Table 1.	Relations B	etween Leng	gth, Volume,	and Mass U	Inits
Metric		English		Metric-En	glish
Length					
1 km	= 10 ³ m	1 ft	= 12 in	1 in	= 2.54 cm*
1 cm	$= 10^{-2} \mathrm{m}$	1 yd	= 3 ft	1 m	= 39.37 in
1 mm	$= 10^{-3} \mathrm{m}$	1 mi	= 5280 ft	1 mi	= 1.609 km
1 nm	$= 10^{-9} m = 10 \text{\AA}$				
Volume					
1 m ³	$= 10^{6} cm^{3} = 10^{3} L$	1 gal	= 4 qt = 8 pt	1 ft ³	= 28.32 L
1 cm ³	$= 1 \text{ mL} = 10^{-3} \text{ L}$	1 qt (U.S. liq)	= 57.75 in ³	1 L	= 1.057 qt (U.S. lie
Mass					
1 kg	$= 10^{3} g$	1 lb	= 16 oz	1 lb	= 453.6 g
1 mg	$= 10^{-3} g$	1 short ton	= 2000 lb	1 g	= 0.03527 oz
1 metric ton	$= 10^{3} \text{ kg}$			1 metric ton	= 1.102 short ton

Properties of Substances

- · There are two fundamental types of property
 - · Chemical properties
 - · Require chemical change
 - · Physical properties
 - No chemical change is required

Chemical Properties

- · Examples
 - Mercury(II) oxide decomposes to mercury and oxygen gas when heated
 - · Silver tarnishes on exposure to sulfides in air

Physical Properties

- · Melting point
 - Temperature at which a solid changes to a liquid
- Boiling point
- Temperature at which a liquid changes to a gas
- Both boiling and melting are reversible simply by changing the temperature

Density • The density of a substance is its mass divided by its volume $d = \frac{m}{v}$

Solubility

- The process by which one substance dissolves in another is ordinarily a physical change
- · The resulting mixture is a solution
- Solutions may be classified by the relative amount of solute and solvent
 - · Saturated: maximum amount of solute
 - Unsaturated: less than maximum amount of solute
 - Supersaturated: more than maximum amount of solute

Example 1.6

Example 1.6 Graded

Sucrose is the chemical name for the sugar we consume. Its solubility at 20°C is 204 g/100 g water, and at 100°C is 487 g/100 g water. A solution is prepared by mixing 139 g of sugar in 33.0 g of water at 100°C.

- *(a) What is the minimum amount of water required to dissolve the sugar at 100°C?
 **(b) What is the maximum amount of sugar that can be dissolved in the water at 100°C?
- ******* (c) The solution is cooled to 20°C. How much sugar (if any) will crystallize out? ******** (d) How much more water is required to dissolve all the sugar at 20°C?

Strategy The solubility at a particular temperature gives a relationship between grams of sugar and grams of water. This in turn leads to a conversion factor to calculate either the mass of sugar or that of water.

Color

- · Some substances can be identified by color
- Color arises from the absorption and transmission of specific wavelengths of light
 - · Copper sulfate is blue
 - · Potassium permanganate is deep violet

Visible Light

- Visible light ranges from 400 to 700 nm
 - Below 400 nm is the ultraviolet
 - Ultraviolet light leads to sunburn
 - Above 700 is the infrared
 - Heat
 - Absorption of infrared light leads to warming up
 - Global warming and carbon dioxide

Table 1.4 Relation Betw	veen Color and Wavelength	n
Wavelength (nanometers)	Color Absorbed	Color Transmittee
<400 nm	Ultraviolet	Colorless
400450 nm	Violet	Bed orange vellow
450–500 nm	Blue	J Hou, orange, fenom
500–550 nm	Green	Pumle
550580 nm	Yellow) r uipio
580650 nm	Orange	Rive green
650-700 nm	Red	J Didd, groon
>700 nm	Infrared	Colorless

Key Concepts

- 1. Convert between Fahrenheit, Celsius and Kelvin.
- 2. Determine the number of significant figures in a measured quantity.
- 3. Determine the number of significant figures in a calculated quantity.
- 4. Use conversion factors to change from one quantity to another.
- 5. Use density to relate mass and volume.
- 6. Given the solubility, relate mass to volume for a substance.