

Fundamental Questions

- How many atoms are there in a gram of an element?
- How much iron can be obtained from a ton of iron ore?
- How much nitrogen gas is required to form a kilogram of ammonia?

Atomic Masses

- Individual atoms are too light to be weighed on a balance
- Collections of atoms can be weighed and those collections can give accurate atomic masses

Outline

- Atomic Masses
- The Mole
- Mass Relations in Chemical Formulas
- Mass Relations in Reactions

Stoichiometry

- Chemical arithmetic
- Study of mass relationships in chemistry

The Carbon-12 Scale

- The atomic mass of an element indicates how heavy, on average, an atom of an element is when compared to an atom of another element
- Unit is the atomic mass unit (amu)
- Mass of one ${ }^{12} \mathrm{C}$ atom $=12 \mathrm{amu}$ (exactly)
- Note that ${ }^{12} \mathrm{C}$ and $\mathrm{C}-12$ mean the same thing

Masses and the Periodic Table

- The mass of an element is indicated below the symbol for the element
- Consider He
- On average, one He atom weighs 4.003 amu
- This is about $1 / 3$ the mass of a carbon- 12 atom

$$
\frac{4.003 \mathrm{amu}}{12.00 \mathrm{amu}}=0.3336
$$

Figure 3.1 - Mass Spectrometer

- A mass spectrometer is used to determine atomic masses

Fluorine

- Atomic fluorine exists as a single isotope
- Mass of F is exactly 19.00 amu

Comparing Two Atoms - Mass Ratio

$$
\frac{\text { atomic mass } X}{\text { atomic mass } Y}=\frac{\text { mass of atom } X}{\text { mass of atom } Y}
$$

Mass Spectrometry

- Atoms are ionized at low pressure in the gas phase
- The cations that form are accelerated toward a magnetic field
- The extent to which the cation beam is deflected is inversely related to the mass of the cation

Carbon

- ${ }^{12} \mathrm{C}$ has a mass of exactly 12.000 amu
- Carbon in the periodic table has a mass of 12.011 amu
-Why isn't it exactly 12.000 ?
- Why are most atomic masses not whole numbers?

Isotopes

- Recall that an isotope is an atom with the same number of protons
- Therefore, the same element
- Different mass number
- Therefore, a different number of neutrons

Isotopic Abundance

- To determine the mass of an element, we must know the mass of each isotope and the atom percent of the isotopes (isotopic abundance)
- The mass spectrometer can determine the isotopic abundance

Figure 3.2 - Mass Spectrum of Cl

- The area under the peak in the mass spectrogram gives the isotopic abundance

Averages

- Take the simple average of two numbers
- Add the numbers and divide by 2
- Each number counts 50%
- $(10+15) / 2=12.5$
- $(0.5 \times 10)+(0.5 \times 15)=12.5$
- A simple average is simply a weighted average where each contributor counts 50%

Chlorine

- Two isotopes
- Cl-35
- CI-37

	Atomic Mass	Abundance
$\mathrm{Cl}-35$	34.97 amu	75.53%
$\mathrm{Cl}-37$	36.97 amu	24.47%

Average Atomic Masses

- The atomic mass quoted in the periodic table is the weighted average of the atomic masses of all isotopes of that element

Weighted Averages

- For an element with two isotopes, Y_{1} and Y_{2} :
atomic mass $Y=\left(\right.$ atomic mass $\left.Y_{1}\right) \frac{\% Y_{1}}{100}+\left(\right.$ atomic mass $\left.Y_{2}\right) \frac{\% Y_{2}}{100}$
- For chlorine:
atomic mass $\mathrm{Cl}=34.97 \mathrm{amu}\left(\frac{75.53}{100}\right)+36.97\left(\frac{35.46}{100}\right) \mathrm{amu}$

Masses of Individual Atoms

- It is usually sufficient to know the relative masses of atoms
- One He atom is about four times as heavy as one H atom
- Therefore
- The mass of 100 He atoms is about four times the mass of 100 H atoms
- The mass of a million He atoms is about four times the mass of a million H atoms

Example 3.1

```
Example 3.1
Bromine is a red-orange liquid with an average atomic mass of
79.90 amu. It name is derived from the Greek word bromos (Buopos), which mear
stench. It has two naturally occurring isotopes: }\textrm{Br}-79(78.92 amu) and Br-81
(80.92 amu). What is the abundance of the heavier isotope?
Strategy The key to solving this problem is to realize that the abumdances of the
isotopes have to add to 100%. If we let }x=\mathrm{ abundlance of Br-81, then the abundance of
Br-79 must he (100 - x).
SOLUTION Suhstituting in Equation 3.1,
\[
\begin{aligned}
79.90 \mathrm{amu} & =78.92 \mathrm{amu} \frac{(100-x)}{100}+80.92 \mathrm{amu} \frac{(x)}{100} \\
& =78.92 \mathrm{amu}+2.00 \mathrm{amu} \frac{(x)}{100}
\end{aligned}
\]
```

$$
\text { Solving: } \quad \frac{x}{100}=\frac{(79.90-78.92) \mathrm{amu}}{2.00 \mathrm{amu}}=0.49 ; \quad x=100(0.49)=49 \%
$$

Reality Check The atomic mass of $\mathrm{Br}, 79.90$, is just about halfway between the masses of the two isotopes, 78.92 and 80.92 . So, it is reasonable that it should contain nearly equal amounts of the two isotopes.

Avogadro's Number

- There is a number that corresponds to a collection of atoms where the mass of that collection in grams is numerically equal to the same number in amu, for a single atom
- $\mathrm{N}_{\mathrm{A}}=6.022 \times 10^{23}$
- Number of atoms of an element in a sample whose mass is numerically equal to the mass of a single atom
- By knowing Avogadro's number and the atomic mass, it is now possible to calculate the mass of a single atom in grams

Figure 3.3-One Mole of Several Substances

Example 3.2

Example 3.2 Consider titanium (Ii), the "space-age" metal discussed at the end of Chapter 1. 'Taking Avogadro's number to be 6.022×10^{23}, calculate
(a) the mass of a titanium atom.
(b) the number of atoms in a ten-gram sample of the metal.
(c) the number of protons in 0.1500 lb of titanium.

Strategy From the periodic table, the atomic mass of titanium is 47.87 amu . It follows that

$$
6.022 \times 10^{23} \mathrm{Ti} \text { atoms }=47.87 \mathrm{~g} \mathrm{Ti}
$$

The relation yields the required conversion factor for (a) and (b). Also from the periodic table, we see that the atomic number for titanium is 22 , the number of protons in an atom of titanium.

The Mole

- A mole is Avogadro's number of items
- Very large number
- Avogadro's number of pennies is enough to pay all the expenses of the United States for a billion years or more, without accounting for inflation
- The molar mass
- The molar mass, MM, in grams $/ \mathrm{mole}$, is numerically equal to the sum of the masses (in amu) of the atoms in the formula

Molar Masses of Some Substances		
Formula	Sun of Alomic Mases	Moler Mass Mm
$\begin{aligned} & 0 \\ & \begin{array}{l} 0, \\ n_{0} \\ \text { Nocl } \end{array} \end{aligned}$		$16.00 \mathrm{~g} / \mathrm{mol}$ $32.00 \mathrm{~g} / \mathrm{mol}$ $58.44 \mathrm{~g} / \mathrm{mol}$

The Significance of the Mole

- In the laboratory, substances are weighed on balances, in units of grams
- The mole allows us to relate the number of grams of a substance to the number of atoms or molecules of a substance

Mole-Gram Conversions

- $m=M M X n$
- $\mathrm{m}=$ mass
- MM = molar mass
- $\mathrm{n}=$ number of moles

Example 3.3

Example 3.3

Acetylsalicylic acid, $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}$, is the active ingredient of aspirin.
(a) What is the mass in grams of 0.509 moles of acetysalicylic acid?
(b) A one-gram sample of aspirin contains 75.2% by mass of $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}$. How many moles of acetylsalicylic acid are in the sample?
(c) How many molecules of $\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}_{4}$ are there in 12.00 g of acetylsalicylic acid? How many carbon atoms?

Strategy Find the molar mass of $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{4}$ and use it to convert moles to grams in (a), grams to moles in (b), and (with Avogadro's number) grams to molecules in (c).

Example 3.3 (cont'd)

```
SOLUTION 'Ihe molar mass of C- }\mp@subsup{\textrm{H}}{8}{\prime}\mp@subsup{\textrm{O}}{4}{}\mathrm{ , is
    MM = |9(12.01) + $(1.008) + 4(16.00) |g/mol = 180.15g/mol
(a) 0.509 mol }\times\frac{180.15\textrm{g}}{1\textrm{mol}}-91.7\textrm{g
(b) 1.00 g aspirin }\times\frac{75.2\mp@subsup{g}{\mp@subsup{g}{2}{}}{2}\mp@subsup{H}{8}{}\mp@subsup{O}{4}{}}{100\textrm{g}\mathrm{ aspirin}}\times\frac{1\textrm{mol}}{180.15\textrm{g}}=4.17\times1\mp@subsup{0}{}{-3}\textrm{mol
(c) }12.00\textrm{g C.H}\mp@subsup{\textrm{H}}{3}{}\mp@subsup{\textrm{O}}{4}{}\times\frac{1\textrm{mol}}{180.15\textrm{g}}\times\frac{6.022\times1\mp@subsup{0}{}{22}\mathrm{ moleculec}}{1\textrm{mol}}=4.011\times1\mp@subsup{0}{}{22}\mathrm{ molecules
    Since there are 9 carbon atoms in one molecule of C; H2, O
        nu. of C atoms = 4.011 }\times1\mp@subsup{0}{}{32}\mathrm{ mukecules }\times\frac{9\mathrm{ C atoms }}{1\mathrm{ molecule }}=3.610\times1\mp@subsup{0}{}{23
```


Mass Relations in Chemical Formulas

- Percent composition from formula
- The percent composition of a compound is stated as then number of grams of each element in 100 g of the compound
- By knowing the formula, the mass percent of each element can be readily calculated

Chemical Analysis

- Experimentation can give data that lead to the determination of the formula of a compound
- Masses of elements in the compound
- Mass percents of elements in the compound
- Masses of products obtained from the reaction of a weighed sample of the compound
Reality Check Because every known substance has a molar mass greater than $1 \mathrm{~g} / \mathrm{mol}$,
the mass of the sample in grams is always larger than the number of moles.

Since there are 9 carbon atoms in one molecule of $\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{O}_{4}$
no. of C atoms $=4.011 \times 10^{32}$ mokecules $\times \frac{9 \text { C atoms }}{1 \text { molecule }}=3.610 \times 10^{23}$
Reality Check Because every known substance has a molar mass greater than $1 \mathrm{~g} / \mathrm{mol}$, the mass of the sample in grams is always larger than the number of moles.

Chemical Formulas

- In chapter 2, we learned that the chemical formula tells us the number of atoms of each element in a compound, whether that is a molecular compound or an ionic compound
- We can now combine that knowledge with the knowledge of molar mass to begin relating elements by mass

Example 3.4

Example 3.4

Grated

 produce exackilyerun of tion?
SOLUTION
(a) hane mole of Fosp, there ace rua males of ime and there males of oxyers.
rass $\mathrm{Fe}-2$ mal($5 \mathrm{~s} \times \mathrm{segmo})-111.7 \mathrm{f}$
mass $0=3 \mathrm{mad}(16 \mathrm{sog} \mathrm{g} / \mathrm{mol})=4 \mathrm{simg} \mathrm{g}$
$48 \mathrm{Fe}-{ }_{159.7 \mathrm{~g}}^{111.7 \mathrm{~g}} \times 10044-0.94,840-0000-69.9 .4-31.166$
(a) $1.000 \times 10^{7} \mathrm{~g} \mathrm{Fe}, \mathrm{O}, \times \begin{array}{r}111.7 \mathrm{gFe} \\ 159.7 \mathrm{gFe}, \mathrm{O},\end{array}$

$-6.99 .4 \mathrm{~g} \mathrm{~T}$

(a) Jethas the simpas way to procect here s to star with one kilogun of Fe, convert
thet lo kiograms al Fe, O, then convert to kilograms af her atie and firally to
metric tons

-2.15×0^{-1} mestiotan

Simplest Formula from Chemical Analysis

- Often, the formula is not known, but data from chemical analysis is known
- Amount of each element in grams
- Can be used to determine the simplest formula
- Smallest whole-number ratio of atoms in a compound
- $\mathrm{H}_{2} \mathrm{O}$ is the simplest formula for water
- $\mathrm{H}_{2} \mathrm{O}_{2}$ is the molecular formula for HO

Example 3.5 - Simplest Formula from Masses of Elements

Example 3.6 - Simplest Formula from Mass

 Percents (cont'd)Strategy The first step (1) is to calculate the masses of C, H, and O in the $5.00-\mathrm{g}$ sample. To do this note that all of the carbon has been converted to carbon dioxide. One mole of (: $(12.01 \mathrm{~g})$ forms one mole of C$)_{2}(44.01 \mathrm{~g})$. Hence to find the mass of carbon in 7.33 g of CO_{2}, you use the conversion factor:

$$
12.01 \mathrm{gC} / 44.01 \mathrm{~g} \mathrm{CO})_{2}
$$

By the same token, all the hydrogen ends up as water. Because there are two moles of $\mathrm{H}(2.016 \mathrm{~g})$ in one mole of $\mathrm{H}_{2} \mathrm{O}(18.02 \mathrm{~g})$, the conversion factor is

$$
2(1.008) \mathrm{g} \mathrm{H} / 18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}
$$

The mass of oxygen in the sample cannot be found in a similar way because some of the oxygen in the products comes from the air required to burn the reactants. Instead we find the mass of oxygen by difference:

$$
\text { mass } \mathrm{O}=\text { mass of sample }-(\text { mass of } \mathrm{C}+\text { mass of } \mathrm{H})
$$

Once the masses of the elements are obtained, it's all downhill; follow the same path as in Example 3.5

Example 3.6 - Simplest Formula from Mass

 Percents- When dealing with percentages, assume 100 g of the compound
- By doing so, the unitless percentage becomes a meaningful mass

The compound that gives vinegar its sour taste is acetic acid, which contains the elements carbon, hydrogen, and oxygen. When 5.00 g of acetic acid are burned in air, 7.33 g of CO_{2} and 3.00 g of water are obtained. What is the simplest formula of acetic acid?

Example 3.6 - Simplest Formula from Mass Percents (cont'd)

```
S SOLUNON 
```



```
3) Find:he nenter of fmales of cosh clenert
```



```
(3) Tind the mok miow amc: then ber simpest larmiuk
```



```
Ramding off:v wמ̇le numbes, the mule rotios Dre
                                    moll C:2 mel H:1 molo
                                    wid & CH4<
```


Example 3.7

Example 3.7

The molar mass of acetic acid, as determined with a mass
spectrometer, is about $60 \mathrm{~g} / \mathrm{mol}$. Using that information along with the simplest formula found in Example 3.6, determine the molecular formula of acetic acid.

Strategy Calculate the molar mass corresponding to the simplest formula, $\mathrm{CH}_{2} \mathrm{O}$. Then find the multiple by dividing the actual molar mass, $60 \mathrm{~g} / \mathrm{mol}$, by the molar mass of $\mathrm{CH}_{2} \mathrm{O}$.

SOLUTION

$$
\mathrm{MM} \mathrm{CH} 32=12.01 \mathrm{~g} / \mathrm{mol}+2(1.008 \mathrm{~g} / \mathrm{mol})+16.00 \mathrm{~g} / \mathrm{mol}=30.03 \mathrm{~g} / \mathrm{mol}
$$

The ratio of the actual molar mass, $60 \mathrm{~g} / \mathrm{mol}$, to that of $\mathrm{CH}_{2} \mathrm{O}$ is

$$
\frac{60 \mathrm{~g} / \mathrm{mol}}{30.03 \mathrm{~g} / \mathrm{mol}}=2 ; \quad \text { molecular formula }=\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{2}
$$

Mass Relations in Reactions

How are Equations Written?

- Chemical equations represent chemical reactions
- Reactants appear on the left
- Products appear on the right
- Equation must be balanced
- Number of atoms of each element on the left
- ...equals the number of atoms of each element on the right
- We must know the reactants and the products for a reaction for which an equation is to be written
- It is often necessary to do an experiment and an analysis to determine the products of a reaction
- Determining the products is often time consuming and difficult

Writing Chemical Equations

1. Write a skeleton equation for the reaction.
2. Indicate the physical state of each reactant and product.
3. Balance the equation

- Only the coefficients can be changed; subscripts are fixed by chemical nature of the reactants and products
- It is best to balance atoms that appear only once on each side of the equation first

Example 3.8

Example 3.8 Crystals of sodium hydroxide (lye) react with carton dioxide from air to form a colorless liquid, water, and a white powder, sodium carbonate, which is commonly added to detergents as a softening agent. Write a balanced equation for this chemical reaction.
Strategy To translate names into formulas, recall the discussion in Section 2.6, Chapter 2. The physical states are given or implied. To balance the equation, you could start with either sodium or hydrogen.
SOLUTION The skeleton equation is

$$
\mathrm{NaOH}(s)+\mathrm{CO}_{2}(g) \longrightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}(s)+\mathrm{H}_{2} \mathrm{O}(l)
$$

Because there are two Na atoms on the right, a coefficient of 2 is written in front of $\mathrm{NaOH}:$

$$
2 \mathrm{NaOH}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g}) \longrightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(l)
$$

Carelul inspection shows that all atoms are now balanced. There are two Na atoms, four O atoms, two H atoms, and one C atom on both sides of the equation.

Mass Relations from Equations

- The coefficients of a balanced equation represent the numbers of moles of reactants and products
- $2 \mathrm{~N}_{2} \mathrm{H}_{4}(\mathrm{I})+\mathrm{N}_{2} \mathrm{O}_{4}$ (I) $3 \mathrm{~N}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}$ (I)
- $2 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{H}_{4}+1 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{O}_{4} \quad 3 \mathrm{~mol} \mathrm{~N}_{2}+4 \mathrm{~mol} \mathrm{H} \mathrm{H}_{2}$

Example 3.9

```
Example 3.9
Graded
Ammonia is used to make fertilizers for lawns and gardens by reacting nitrogen gas with
hydrugen gas.
* (a) Write a balanced equation with smallest whole - number coefficients for this reaction.
* (b) How many moles of ammonia are formed when 1.34 mol of nitrogen react?
** (c) How many grams of hydrogen are required to produce \(2.75 \times 10^{7} \mathrm{~g}\) of ammonia?
**(d) How many molecules of ammona are formed when 2.92 g of hydrogen react?
*** (e) How many grams of ammonia are produced when 15.0 L of air (79\%s by volume nitrogen) react with an excess of hydrogen? The density of nitrogen at the conditions of the reaction is \(1.25 \mathrm{~g} / \mathrm{L}\)
SOLUTION
(a) 'The equation for the reaction is
\(\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})\)
```


Limiting Reactant and Theoretical Yield

Interpreting by Mass

- Reactants
- One mole Sb (243.6 g)
- Three moles $\mathrm{I}_{2}(761.4 \mathrm{~g})$
- Two moles Sbl_{3} (1005.0 g)
- All of the reactants are converted to product

$\mathrm{Sb}-\mathrm{I}_{2}$ with a limiting reactant

- Suppose the mixture is
- 3.00 mol Sb
- $3.00 \mathrm{~mol} \mathrm{l}_{2}$
- In this case
- 1.00 mol Sb will be left over
- 2.00 mol of Sb will be used
- React with $3.00 \mathrm{~mol}_{2}$
- Form $2.00 \mathrm{~mol} \mathrm{Sbl}_{3}$

In the Laboratory

- Reactants are usually not mixed in exact ratios
- An excess of one reactant is often used
- Usually the less (or least) expensive reactant
- One reactant will then limit the amount of product that will form

Example 3.10

Example 3.10

Consider the reaction

$$
2 \mathrm{Sb}(s)+3 \mathrm{I}_{2}(s) \longrightarrow 2 \mathrm{SbI}_{3}(s)
$$

Determine the limiting reactant and the theoretical yield when
(a) 1.20 mol of Sb and 2.40 mol of I_{2} are mixed.
(b) 1.20 g ol' Sb and 2.40 g of I_{2} are mixed. What mass of excess reactant is left when the reaction is complete?

Strategy Follow the four steps oullined above. In steps (1) and (2), follow the strategy described in lixample 3.9 to calculate the amount of product formed. In (a), a simple
one-step conversion is required; in (b), the path is longer because you have to go from mass of reactant to mass of product. To find the mass of reactant left over in (b), calculate how much is required to give the theoretical yield of product. Subtract that from the starting amount to find the amount left.

Example 3.10

```
SOLUTION
(a) (1) n nsm, from Sb = 1.20 mol Sb }\times\frac{2 2 mol Sbl}{3
    (2) n}\mp@subsup{n}{5m,}{},\mathrm{ from I
```

 (3) Because 1.20 mol is the smaller amount of product, that is the theoretical yield
 of \(\mathrm{Sbl}_{3}\). This amount of \(\mathrm{Sb}_{3}\) is produced by the antimony, so Sb is the limiting
 reactant.
 (b) (1) mass of Sbl_{3} from $\mathrm{sb}=1.20 \mathrm{~g} \mathrm{sb} \times{ }^{1} \mathrm{~mol} \mathrm{Sb}^{2} \times{ }^{2 \mathrm{~mol} \mathrm{SbI}_{3}} \times{ }^{502.5 \mathrm{~g} \mathrm{SbI}}{ }_{3}$
$=4.95 \mathrm{~g} \mathrm{SbI}_{3} 12.8 \mathrm{~g} \mathrm{Sb} 2 \mathrm{~mol} \mathrm{Sb}^{1 \text { mol Sbl }}$
(2) mass of SbI_{3} from $\mathrm{I}_{2}=2.40 \mathrm{~g} \mathrm{I}_{2} \times \frac{1 \mathrm{~mol} \mathrm{I}_{2}}{253.8 \mathrm{~g} \mathrm{I}_{2}} \times \frac{2 \mathrm{~mol} \mathrm{Sl}_{3}}{3 \mathrm{~mol} \mathrm{I}_{2}} \times \frac{502.5 \mathrm{~g} \mathrm{Sbl}_{3}}{1 \mathrm{~mol} \mathrm{Sbl}_{3}}$
$=3.17 \mathrm{~g} \mathrm{SbI}_{3}$
(3) The reactant that yields the smaller amount (3.17 g) of SbI_{3} is I_{2}. Hence I_{2} is the
limiting reactant. The smaller amount, 3.17 g of Sbl_{3}, is the theoretical yield.
(4) mass of Sb required $=3.17 \mathrm{~g} \mathrm{SbI}_{3} \times \frac{121.8 \mathrm{~g} \mathrm{Sb}}{502.5 \mathrm{~g} \mathrm{SbI}}=0.768 \mathrm{~g} \mathrm{Sb}$
mass of Sb left $=1.20 \mathrm{~g}-0.768 \mathrm{~g}=0.43 \mathrm{~g}$

The Pancake Analogy

- Consider a recipe for pancakes. To make 16 pancakes, you need
- 2 cups flour
- 2 teaspoons baking powder
- 2 eggs
- 1 cup milk

Pancakes

- Now start with
- 2 cups flour
- 2 teaspoons baking powder
- 1 egg
- 1 cup milk
- It is clear that the egg will limit you to 8 pancakes and that you'll have a cup of flour, a teaspoon of baking powder and a half a cup of milk left over

Pancakes

- The egg is the limiting reactant and the theoretical yield is 8 pancakes

Experimental Yield

Percent Yield

- Experimental yields are always lower than theoretical yields
- Some product is lost to competing reactions
- Some product is lost to handling
- Some product may be lost in separating it from the reaction mixture
- The actual yield is the quantity of product you measure after you have done the reaction in the laboratory
- The percent yield is defined as

$$
\% \text { yield }=\frac{\text { actual yield }}{\text { theoretical yield }} \times 100 \%
$$

Key Concepts

1. Relate the atomic mass of an element to isotopic masses and abundances.
2. Use Avogadro's number to calculate the mass of an atom or molecule (in grams).
3. Use molar mass to relate

- Moles to mass of a substance
- Molecular formula to simplest formula

4. Use the formula of a compound to find its percent composition or the equivalent

Key Concepts

5. Find the simplest formula of a compound from chemical analysis
6. Balance chemical equations by inspection
7. Use a balanced equation to

- Relate masses of reactants and products
- Find the limiting reactant, theoretical yield, and percent yield of a reaction.

