Chapter 3 Homework

Class:
Number: \qquad Name: \qquad

1. What scientific law requires that subscripts in formulas should never be changed while balancing a chemical equation?
a. Law of Multiple Proportions
b. Law of Definite Proportions
c. Law of Conservation of Matter
d. Law of Conservation of Matter and Energy
e. Law of Conservation of Energy
2. Balance the following equation with the smallest whole number coefficients. What is the coefficient for O_{2} in the balanced equation?

$$
\mathrm{C}_{4} \mathrm{H}_{10}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

a. 9
b. 5
c. 15
d. 6
e. 13
\qquad 3. Balance the following equation with the smallest whole number coefficients. What is the coefficient for NH_{3} in the balanced equation?
$\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}+\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Fe}(\mathrm{OH})_{3}+\mathrm{NH}_{4} \mathrm{NO}_{3}$
a. 1
b. 3
c. 2
d. 6
e. 4
\qquad 4. Elemental phosphorus is produced from calcium phosphate in the following reaction. What is the coefficient for C when this equation is balanced with the smallest whole number coefficients?
$\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}+\mathrm{SiO}_{2}+\mathrm{C} \rightarrow \mathrm{P}_{4}+\mathrm{CO}+\mathrm{CaSiO}_{3}$
a. 10
b. 3
c. 1
d. 6
e. 4
\qquad 5. When heated lead nitrate decomposes according to the following equation. What is the coefficient for NO_{2} when the this equation is balanced with the smallest whole number coefficients?
$\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow \mathrm{PbO}+\mathrm{O}_{2}+\mathrm{NO}_{2}$
a. 1
b. 2
c. 3
d. 4
e. 5
6. Balance the following equation with the smallest whole number coefficients. Choose the answer that is the sum of the coefficients in the balanced equation. Do not forget coefficients of "one".
$\mathrm{Na}_{2} \mathrm{O}+\mathrm{P}_{4} \mathrm{O}_{10} \rightarrow \mathrm{Na}_{3} \mathrm{PO}_{4}$
a. 5
b. 8
c. 9
d. 10
e. 11
7. How many moles of O_{2} are required to burn completely $63.5{\mathrm{~g} \text { of } \mathrm{C}_{6} \mathrm{H}_{6} \text {, according to the following equation? }}_{\text {? }}$ $2 \mathrm{C}_{6} \mathrm{H}_{6}+15 \mathrm{O}_{2} \rightarrow 12 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$
a. 0.814
b. 12.2
c. 6.1
d. $\mathbf{0 . 1 0 9}$
e. 9.21
\qquad 8. How many moles of $\mathrm{H}_{2} \mathrm{O}$ will be produced from the complete combustion of 2.4 grams of CH_{4} ? $\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
a. 0.15
b. $\mathbf{0 . 3 0}$
c. 1.5
d. 3.0
e. 6.0
\qquad 9. How many grams of oxygen are required to burn 0.10 mole of $\mathrm{C}_{3} \mathrm{H}_{8}$?
$\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$
a. 8.0 g
b. 12 g
c. 16 g
d. 32 g
e. 64 g
10. If sufficient acid is used to react completely with 72.9 g of magnesium, how much hydrogen will be produced? $2 \mathrm{HCl}+\mathrm{Mg} \rightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2}$
a. 4.5 g
b. $\mathbf{3 . 0} \mathbf{~ m o l}$
c. 1.5 mol
d. 9.0 g
e. 6.0 mol
11. What mass of phosphoric acid, $\mathrm{H}_{3} \mathrm{PO}_{4}$, would actually react with 7.17 grams of LiOH ? $3 \mathrm{LiOH}+\mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow{\mathrm{Li} 3 \mathrm{PO}_{4}}+3 \mathrm{H}_{2} \mathrm{O}$
a. 3.27 g
b. 6.53 g
c. 9.80 g
d. 19.6 g
e. 29.4 g
12. What mass of SiF_{4} could be produced by the reaction of 15 g of SiO_{2} with an excess of HF ? The equation for the reaction is:
$\mathrm{SiO}_{2}+4 \mathrm{HF} \rightarrow \mathrm{SiF}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
a. 1.04 g
b. 12 g
c. 26 g
d. 104 g
e. 52 g
13. What mass of $\mathrm{Li}_{3} \mathrm{PO}_{4}$ can be prepared from the complete reaction of 7.17 grams of LiOH with a stoichiometric amount of $\mathrm{H}_{3} \mathrm{PO}_{4}$?

$$
3 \mathrm{LiOH}+\mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{Li}_{3} \mathrm{PO}_{4}+3 \mathrm{H}_{2} \mathrm{O}
$$

a. 9.80 g
b. 9.34 g
c. 9.61 g
d. 10.4 g
e. 11.6 g
14. A mixture of calcium oxide, CaO , and calcium carbonate, CaCO_{3}, that had a mass of 3.454 g was heated until all the calcium carbonate was decomposed according to the following equation. After heating, the sample had a mass of 3.102 g . Calculate the mass of CaCO_{3} present in the original sample.
CaCO_{3} (solid) $\rightarrow \mathrm{CaO}$ (solid) $+\mathrm{CO}_{2}$ (gas)
a. 0.400 g
b. $\mathbf{0 . 8 0 0} \mathrm{g}$
c. 1.00 g
d. 1.60 g
e. 0.200 g
15. How many moles of carbon dioxide could be produced if 10 moles of octane, $\mathrm{C}_{8} \mathrm{H}_{18}$, are combined with 20 moles of oxygen?
$\mathrm{C}_{8} \mathrm{H}_{18}+25 \mathrm{O}_{2} \rightarrow 16 \mathrm{CO}_{2}+18 \mathrm{H}_{2} \mathrm{O}$
a. 40 mol
b. 8.0 mol
c. 12.8 mol
d. 62.5 mol
e. 20 mol
16. What is the percent yield of elemental sulfur if 7.54 grams of sulfur are obtained from the reaction of 6.16 grams of SO_{2} with an excess of $\mathrm{H}_{2} \mathrm{~S}$?
$2 \mathrm{H}_{2} \mathrm{~S}+\mathrm{SO}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{~S}$
a. $\mathbf{7 2 . 6 \%}$
b. $\mathbf{4 0 . 8 \%}$
c. 81.5%
d. 88.4%
e. 91.4%
17. If 6.6 g of fluorine reacts with 5.6 g chlorine to produce 8.5 g of chlorine trifluoride, what is the limiting reactant and the percent yield of chlorine trifluoride?
$\mathrm{Cl}_{2}+3 \mathrm{~F}_{2} \rightarrow 2 \mathrm{ClF}_{3}$
a. $\mathrm{F}_{2}, \mathbf{4 5 \%}$
b. $\mathrm{Cl}_{\mathbf{2}}, \mathbf{5 8 \%}$
c. $\mathrm{Cl}_{2}, \mathbf{5 3 \%}$
d. $\mathrm{F}_{2}, \mathbf{6 9 \%}$
e. $\mathrm{F}_{2}, 79 \%$
18. What volume of 40.0% NaNO3 solution contains 0.15 mole of NaNO3? Density $=1.32 \mathrm{~g} / \mathrm{mL}$.
a. $\mathbf{4 2 . 0} \mathbf{~ m L}$
b. $\mathbf{3 . 8 6} \mathbf{~ m L}$
c. 9.60 mL
d. 24.1 mL
e. 38.2 mL
19. The molarity of a solution is defined as
a. the number of moles of solute per kilogram of solvent.
b. the number of moles of solute per liter of solution.
c. the number of equivalent weights of solute per liter of solution.
d. the number of moles of solute per kilogram of solution.
e. the number of moles of solute per liter of solvent.
20. What volume of 0.365 M NaOH solution contains 53.4 g NaOH ?
a. 3.66 L
b. 2.05 L
c. 146 L
d. 19.5 L
e. 14.6 L
21. Calculate the molarity of the resulting solution if enough water is added to 50.0 mL of 4.20 M NaCl solution to make a solution with a volume of 2.80 L .
a. 75.0 M
b. 0.043 M
c. 33.1 M
d. 0.067 M
e. $0.0750 M$
22. Calculate the resulting molarity of a solution prepared by mixing 25.0 mL of 0.160 M NaBr and 55.0 mL of 0.0320 M NaBr .
a. 0.522 M
b. $\mathbf{0 . 2 7 2} M$
c. 0.230 M
d. 0.0658 M
e. 0.0720 M
23. How many grams of KOH are contained in $400 . \mathrm{mL}$ of 0.250 M KOH solution?
a. 12.4 g
b. 5.61 g
c. 89.8 g
d. 35.1 g
e. 8.98 g
24. How many grams of PbCl_{2} precipitate if 100 . mL of 0.150 M LiCl solution reacts with an excess of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ solution?
$2 \mathrm{LiCl}+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow \mathrm{PbCl}_{2}+2 \mathrm{LiNO}_{3}$
a. 2.09 g
b. 8.34 g
c. 13.9 g
d. 4.17 g
e. 92.7 g
25. What is the molarity of a solution prepared by dissolving $\mathbf{1 0 0 0} \mathbf{g}$ of sodium phosphate, $\mathbf{N a}_{3} \mathbf{P O}_{4}$, in water and diluting to $\mathbf{3 . 0 0}$ liters? (atomic weights: $\mathrm{Na}=22.99, \mathrm{P}=30.97, \mathrm{O}=16.00$)
a. 4.76 M
b. 0.493 M
c. 2.03 M
d. 6.10 M

Chapter 3

Answer Section

MULTIPLE CHOICE

1. ANS: B
2. ANS: E
3. ANS: B
4. ANS: A
5. ANS: D
6. ANS: E
7. ANS: C PTS: 1
8. ANS: B PTS: 1
9. ANS: C PTS: 1
10. ANS: B PTS: 1
11. ANS: C PTS: 1
12. ANS: C PTS: 1
13. ANS: E PTS: 1
14. ANS: B PTS: 1

PTS: 1
TOP: Chemical Equations
TOP: Calculations Based on Chemical Equations
DIF: * Harder Question
TOP: Calculations Based on Chemical Equations
15. ANS: C PTS: 1 TOP: The Limiting Reactant Concept
16. ANS: C PTS: 1 TOP: Percent Yields from Chemical Reactions
17. ANS: E PTS: 1
18. ANS: D PTS: 1
19. ANS: B PTS: 1
20. ANS: A PTS: 1
21. ANS: E PTS: 1
22. ANS: E PTS: 1

TOP: Dilution of Solutions
23. ANS: B PTS: 1
24. ANS: A PTS: 1
25. ANS: C PTS: 1

TOP: Percent Yields from Chemical Reactions
TOP: Concentrations of Solutions
TOP: Concentrations of Solutions
TOP: Concentrations of Solutions
TOP: Dilution of Solutions
DIF: * Harder Question

TOP: Using Solutions in Chemical Reactions
TOP: Using Solutions in Chemical Reactions
TOP: Additional Questions

