

Review

- In Chapter 3, we learned about chemical reactions
- Most reactions were between pure gases, liquids and solids
- No solvent was used

Solute Concentrations - Molarity

- Definition of molarity
- Molarity = moles of solute/liters of solution
- Symbol is M
- Square brackets are used to indicate concentration in M
- $\left[\mathrm{Na}^{+}\right]=1.0 \mathrm{M}$
- Consider a solution prepared from 1.20 mol of substance A, diluted to a total volume of 2.50 L
- Concentration is $1.20 \mathrm{~mol} / 2.50 \mathrm{~L}$ or 0.480 M

Outline

- Solute Concentrations: Molarity
- Precipitation Reactions
- Acid-Base Reactions
- Oxidation-Reduction Reactions

Reactions in the Laboratory

- Because water is common everywhere, most chemical reactions take place in aqueous solution
- Water is called the universal solvent
- Three common types of reactions in solution:
- Precipitation reactions
- Acid-base reactions
- Oxidation-reduction reactions
- Before we examine each of the three reaction types, we need to examine the concept of molarity

Volumetric Glassware

Figure 4.1 - Preparation of Molar Solution

- Volumetric pipets, burets and flasks are made so that they contain a known volume of liquid at a given temperature
- Preparing solutions with concentrations in M involves using volumetric glassware

Molarity as a Conversion Factor

Example 4.1

```
Example 4.1 Nitric acid, HNO, is extensively used in the manulacture of fettilizer.
    A bottle contaming 75.0 mL of attric acd solution is lateled f.0.M HNO.
    (al How many moles of HNO, are in the bottle?
    (b) A reaction needs 5.00 g of HNO, How many mL of solution are reguired?
    (c) Ten mL of water are added to the solution. What is the molarity of the resulting
        solution? (Assume volumcs are additive)
    Strategy The requived conversion factors ame
                6.0 mal lINO, and 63.028 HNO,
    SOLution
```



```
    (c) IFom, (a) we see that there are 0.45 moles H.NO, in the solution before aldition of
    (c) liram (a) we see that there are 0.45 moles HNO, in the solution before adution of
        moles Thus.
            M = molles HNO)
    Reality Check The nolarity decreases wher water is added. The mols of solute stay
    the same, but the volume of the solution increases.
```


Dissolving Ionic Solids

- When an ionic solid is dissolved in a solvent, the ions separate from each other
- $\mathrm{MgCl}_{2}(\mathrm{~s}) \quad \mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq})$
- The concentrations of ions are related to each other by the formula of the compound:
- Molarity MgCl_{2} of $=$ molarity of Mg^{2+}
- Molarity of $\mathrm{Cl}^{-}=2 \mathrm{X}$ molarity of MgCl_{2}
- Total number of moles of ions per mole of MgCl_{2} is 3

Example 4.2

Example 4.2
Potassium dichromate, $\mathrm{K}-\mathrm{C}-\mathrm{O}$-, is used in the tanning of leather A
flesk containing 125 mL of solution is labcled $0.145 \mathrm{M} \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}$,
(a) What is the molarity of cach ion in solution?
(b) A sample containing 0.200 moles of K^{-}is added to the solution. Assuming no wolume change, what is the mularily of the new solution?
Strategy To go from concentration of solute to concentration of an inclividual ion, you must know the conversion factor relating moles of jons to moles of solute. To find this conversion factor, it is helpful to write the equation for the solution process.
SOLUTION
(a) $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}(s) \longrightarrow 2 \mathrm{~K}^{+}(a q)+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(\operatorname{qq})$.

The conversion factors are $2 \mathrm{~mol} \mathrm{~K}{ }^{-} / 1 \mathrm{~mol} \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ and $\mathrm{Imol} \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ 1 mol $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{3}$. Thus,
$\left[\mathrm{K}^{\prime}\right]=\frac{0.145 \mathrm{~mol} \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}}{1 \mathrm{~T} .} \times \frac{2 \mathrm{~mol}{ }^{1}}{1 \mathrm{~mol} \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}}=0.290 \mathrm{M}$
$\left[\mathrm{Cr}_{2} \mathrm{O}_{2}^{2-}\right]=\frac{0.145 \mathrm{~mol} \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}}{1 \mathrm{~L}} \times \frac{1 \mathrm{~mol} \mathrm{Cr}}{2} \mathrm{O}_{7}^{2-}{ }^{2-} \mathrm{mol} \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}-0.145 \mathrm{M}$
(b) First, find the moles of K^{+}in the original solution:
$\left(v_{\mathrm{K}^{+}}\right)_{\text {aidmal }}=\frac{0.290 \mathrm{~mol} \mathrm{~K}^{+}}{1 \mathrm{~L}} \times 0.125 \mathrm{~T} .=0.03625 \mathrm{~mol}$

Example 4.2 (cont'd)

Next, we find the molarity of K^{+}atter the addition of K^{+}ions:

$$
\begin{gathered}
n_{\mathrm{K}^{+}}=0.03625+0.200=0.236 \\
\left|\mathrm{~K}^{\prime}\right|-\frac{0.236 \mathrm{~mol}}{0.125 \mathrm{~L}}-1.89 \mathrm{M}
\end{gathered}
$$

Finally, we convert $\left\{\mathrm{K}^{+}\right\rfloor$to $\left[\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{3}\right]$ using the ion-to-solute conversion factor.

$$
\left[\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}\right]=\frac{1.89 \mathrm{~mol} \mathrm{~K}^{+}}{1 \mathrm{~L}} \times \frac{1 \mathrm{~mol} \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}}{2 \mathrm{~mol} \mathrm{~K}}=0.945 \mathrm{M}
$$

Reality Check The concentration of $\mathrm{K}+$ should be twice that of $\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2}$ in either solu tion. It is!

Precipitation

- Precipitation in chemical reactions is the formation of a solid where no solid existed before reaction
- Precipitation is the reverse of solubility, where a solid dissolves in a solvent to produce a solution

Will it Dissolve?

- Soluble compounds dissolve in water
- Insoluble compounds do not dissolve

Figure 4.4

Precipitates

- Precipitates are called insoluble - they do not dissolve in solution
- Precipitation of an insoluble solid
- Mix a solution of nickel(II) chloride with one of sodium hydroxide
- A solid forms: $\mathrm{Ni}(\mathrm{OH})_{2}(\mathrm{~s})$

Figure 4.3 - Precipitation Diagram

Solubility Trends

- From the diagram, we see that some compounds are mostly soluble
- Compounds of Group 1 and $\mathrm{NH}_{4}{ }^{+}$cations
- All nitrates
- All chlorides, except for AgCl
- All sulfates, except for BaSO_{4}

Working Solubility Problems

- By knowing the rules expressed Figure 4.3, we can predict what mixtures will precipitate, and what compounds will form

Solubilities Trends

- Some compounds are mostly insoluble
- Carbonates and phosphates, except for the Group I and ammonium
- Hydroxides, except for the Group 1, Group 2 and ammonium
- $\mathrm{Mg}(\mathrm{OH})_{2}$ is insoluble

Example 4.3

Example 4.3
Using the precipitation diagram (Figure 4.3), predict what will happen when the following pairs of aqueous solutions are mixed.
$\begin{array}{ll}\text { (a) } \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \text { and }\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} & \text { (b) } \mathrm{FeCl}_{3} \text { and } \mathrm{AgNO}_{3}\end{array}$
Strategy First decide what cation and anion are present in each solution. Then write the formulas of the two possible precipitates, combining a cation of one solution with the anion of the other solution. Check Figure 4.3 to see if one or both of these compounds are insoluble. If so, a precipitation reaction occurs.

Example 4.3 (cont'd)

SOLUTION

(a) Ions present in the first solution: $\mathrm{Cu}^{2+}, \mathrm{NO}_{3}^{-}$; the second solution: $\mathrm{NH}_{4}^{+}, \mathrm{SO}_{4}{ }^{2-}$ Possible precipitates: $\mathrm{CuSO}_{4}, \mathrm{NH}_{4}, \mathrm{NO}_{3}$
From Figure 4.3, both of these compounds are soluble, so no precipitate forms. (b) Ions present: $\mathrm{Fe}^{3+}, \mathrm{Cl}^{-} ; \mathrm{Ag}^{+}, \mathrm{NO}_{3}{ }^{-}$

Possible precipitates: $\mathrm{AgCl}, \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}$
Iron(III) nitrate is soluble, but silver chloride is not. When these two solutions are mixed, silver chloride precipitates.

Net lonic Equations

- Consider the precipitation of CaCO_{3} from solutions of CaCl_{2} and $\mathrm{Na}_{2} \mathrm{CO}_{3}$
- Reactants: $\mathrm{Ca}^{2+}, \mathrm{Cl}^{-}, \mathrm{Na}^{+}$and $\mathrm{CO}_{3}{ }^{2-}$
- Products: $\mathrm{CaCO}_{3}, \mathrm{Na}^{+}$and Cl^{-}
- Two of the ions are unchanged
- These are spectator ions
- Net ionic equation: leave out the spectator ions - $\mathrm{Ca}^{2+}(\mathrm{aq})+\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq}) \quad \mathrm{CaCO}_{3}(\mathrm{~s})$

Net Ionic Equations

- Must follow the rules for equations
- Atoms must balance
- Charges must balance
- Show only the ions that react

Example 4.4

Example 4.4 Write a net ionic equation for any precipitation reaction that occurs when solutions of the following ionic compounds are mixed.
(a) NaOH and $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$
(b) BaCl_{2} and $\mathrm{Ag}_{2} \mathrm{SO}_{4}$
(c) $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$

Strategy Follow the procedure of Example 4.3 to decide whether a precipitate will form. If it does, write its formula, followed by (s), on the right side of the equation. On the left (reactant) side, write the formulas of the ions (aq) required to produce the precipitate. Finally, balance the equation.
SOLUTION
(a) lons present: $\mathrm{Na}^{+}, \mathrm{OH}^{-} ; \mathrm{Cu}^{2+}, \mathrm{NO}_{5}^{-}$

Possible precipitates: $\mathrm{NaNO}_{3}, \mathrm{Cu}(\mathrm{OH})_{2}$
NaNO_{3} is soluble, but $\mathrm{Cu}(\mathrm{OH})_{2}$ is not.
Fquation: $\mathrm{Cu}^{2-}(\mathrm{aq})+2 \mathrm{OH}^{-}($aq $) \longrightarrow \mathrm{Cu}(\mathrm{OH})_{2}(\mathrm{~s})$

Why Write Net lonic Equations?

- Net ionic equations

- Focus attention on the reaction
- Simplify calculations
- We will use net ionic equations from now on

Example 4.5 - Precipitation Stoichiometry

Example 4.5
Graded
When aqueous solutions of sodium hydroxide and iron(111) nitrate are mixed, a red precipitate forms.
*(a) Write a net ionic equation for the reaction.
**(b) What volume of 0.136 M iron(III) nitrate is required to produce 0.886 g of precipitate?
*** (c) How many grams of precipitate are formed when 50.00 mL of 0.200 M NaOll and 30.00 mL of $0.125 \mathrm{M} \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}$ are mixed?

Example 4.5 - Precipitation Stoichiometry

SOLUTION

(a) $\mathrm{Fe}^{3+(a q)}+3 \mathrm{OH}^{-}(\mathrm{aq}) \longrightarrow \mathrm{Fe}(\mathrm{OH})_{3}(s)$
(b) Deternine the number of moles of precipitate. The molar mass of $\mathrm{Fe}(\mathrm{OH})_{3}$ is $106.87 \mathrm{~g} / \mathrm{mol}$, sn

$$
n_{\mathrm{BraO} \mathrm{O}_{4}}=0.8886 \mathrm{~g} \times \frac{1 \mathrm{~mol}}{106.87 \mathrm{~g}}=8.29 \times 10^{-3} \mathrm{~mol}
$$

Note that in the reaction, one mole of Fe^{3+} produces one mole of $\mathrm{Fe}(\mathrm{OH})_{3}$. Thus.

$$
n_{\mathrm{s}^{5}}=8.29 \times 10^{-3} \mathrm{~mol}
$$

Yuu will need the molarity of $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)$, to determine the volume required. Since there is one ion of Fe^{3-} in $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}$.

$$
n_{\mathrm{Fexwa}_{3}, 3}=8.29 \times 10^{-9} \mathrm{mcl}
$$

To deternine the volume, use the relation $n=V \times M$:
$V=\frac{8.29 \times 10^{-3} \mathrm{~mol}}{0.136 \mathrm{mol/}}=0.0510 \mathrm{I}$.
(c) This is a limiling-reactant problem, Specilic amounts of both reaclants are given. First, find the moles of Fe(OH), produced if Fe^{1+} is limiting. $v_{\text {ruOH }}^{3}=\frac{0.0300 \mathrm{~L} \times 0.125 \mathrm{~mol} \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}}{1 \mathrm{~L}} \times \frac{1 \mathrm{~mol} \mathrm{Fe}^{3-}}{1 \mathrm{~mol} \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{5}} \times \frac{1 \mathrm{~mol} \mathrm{Fe}(\mathrm{OH})_{3}}{1 \mathrm{~mol} \mathrm{Fe}}$

Example 4.5 - Precipitation Stoichiometry

```
If OH-
            0.0500 L }\times\underset{1 [.200 mol NaOH}{ L
```

 \(=0.00333 \mathrm{~mol}\)
 Because 0.00333 is less than $0.00375, \mathrm{OH}^{-}$is the limiting reactant. The theoretical yicld of $\mathrm{Fe}(\mathrm{OH})_{3}$ is 0.00333 mol . So, the mass produced is
$0.00333 \mathrm{~mol} \mathrm{Fe}(\mathrm{OH})_{3} \times \frac{106.87 \mathrm{~g} \mathrm{Fe}(\mathrm{OH})_{3}}{1 \mathrm{~mol} \mathrm{Fe}(\mathrm{OH})_{3}}=0.356 \mathrm{~g} \mathrm{Fe}(\mathrm{OH})_{3}$

Strong and Weak Acids and Bases

- Strong acids ionize completely to H^{+}
- $\mathrm{HCl}(\mathrm{aq}) \mathrm{H}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$
- In a solution of 1.0 M HCl , there is $1 \mathrm{M} \mathrm{H}^{+}$and $1 \mathrm{M} \mathrm{Cl}^{-}$
- No HCl is left un-ionized
- Other strong acids ionize in similar fashion

Acids and Bases

- Everyday life includes contact with many acids and bases

The Double Arrow Notation ($\stackrel{\rightharpoonup}{ }$)

- Some equations use a double arrow rather than a single arrow
- Note that the double arrow points in both directions
- For now, the double arrow indicates that a reaction does not proceed completely to the right

Weak Acids

- Weak acids ionize only partially
- $\mathrm{HB}(\mathrm{aq}) \geq \mathrm{H}^{+}(\mathrm{aq})+\mathrm{B}^{-}(\mathrm{aq})$
- $\mathrm{HF}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq})$
- Commonly, weak acids are 5% ionized or less

Strong Bases

- Strong bases ionize completely to OH^{-}
- $\mathrm{NaOH}(\mathrm{s}) \quad \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
- $\mathrm{Ca}(\mathrm{OH})_{2} \quad \mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq})$

Strong Acids and Bases			
Table 4.1 Common Strong Acids and Bases			
Acid	Name of Acid	Base	Name of Base
HCI	Hydrochloric acid	LiOH	Lithium hydroxide
HBr	Hydrobromic acid	NaOH	Sodium hydroxide
H	Hydriodic acid	KOH	Potassium hydroxide
HNO_{3}	Nitric acid	$\mathrm{Ca}\left(\mathrm{OH}_{2}\right.$	Calcium hydroxide
HClO_{4}	Perchloric acid	SrOHH	Strontium hydroxide
$\mathrm{H}_{2} \mathrm{SO}_{4}$	Sulfuric acid	$\mathrm{Ba}\left(\mathrm{OH}_{2}\right.$	Barium hydroxide
esosascon cmope come			

Acids and Bases - Reactions

- Acids react with bases
- Strong acid-strong base
- Weak acid-strong base
- Weak base-strong acid

Weak Bases

- Weak bases ionize only partially
- $\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
- $\mathrm{CH}_{3} \mathrm{NH}_{2}$ (aq) $+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{NH}_{3}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
- Commonly, weak bases are 5% ionized or less

Strong Acid-Strong Base Reaction

- Always the same net ionic equation
- $\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \quad \mathrm{H}_{2} \mathrm{O}$
- Note that as usual, net ionic equations use the smallest whole number coefficients
- $2 \mathrm{HBr}(\mathrm{aq})+\mathrm{Ba}(\mathrm{OH})_{2}(\mathrm{aq}) \quad 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{CaBr}_{2}(\mathrm{aq})$
- Still has the same net ionic equation:
- $\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \quad \mathrm{H}_{2} \mathrm{O}$

Weak Acid-Strong Base Reaction

- Two steps

- $\mathrm{HB}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{B}^{-}(\mathrm{aq})$
- $\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \mathrm{H}_{2} \mathrm{O}$
- Overall reaction
- $\mathrm{HB}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \quad \mathrm{B}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}$

Weak Base-Strong Acid Reaction

- Two steps
- $\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
- $\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \quad \mathrm{H}_{2} \mathrm{O}$
- Overall reaction
- $\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq}) \stackrel{\mathrm{NH}_{4}^{+}}{ }(\mathrm{aq})$

Example 4.6 (cont'd)

(b) Ions present: $\mathrm{Ba}^{2+}, \mathrm{Cl}^{-} ; \mathrm{Ag}^{+}, \mathrm{SO}_{4}{ }^{-}$

Possible precipitates: $\mathrm{BaSO}_{4}, \mathrm{AgCl}$
Both compounds are insoluble, so two reactions occur.

$$
\text { Equations: } \begin{gathered}
\mathrm{Ba}^{21}(a q)+\mathrm{SO}_{2}^{2}(a q) \longrightarrow \mathrm{RaSO}_{1}(s) \\
\mathrm{Ag}^{\prime}(a q)+\mathrm{Cl}(a q) \longrightarrow \mathrm{AgCl}(s)
\end{gathered}
$$

(c) Ions present: $\mathrm{NH}_{4}^{+}, \mathrm{PO}_{4}{ }^{3-}, \mathrm{K}^{+}, \mathrm{CO}_{3}{ }^{3-}$

Both possible products are soluble, so there is no precipitation reaction and no equation.

Acid-Base Titrations

- Commonly used to determine the concentration of a dissolved species or its percentage in a mixture
- Titration
- Measuring the volume of a standard solution (known concentration) needed to react with a measured quantity of a sample

Analyzing for Acetic Acid

- $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightleftharpoons \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}$
- The objective is to determine when the reaction is complete
- When the number of moles of acid equals the number of moles of OH^{-}, the equivalence point has been reached
- Equivalence point is where the number of moles of acid equals the number of moles of base
- The endpoint is indicated by a color change in the acid-base indicator

Figure 4.7 - An Acid-Base Titration

Example 4.7

Example 4.7 Graded

Three beakers labeled A, B, and C contain the weak acid $\mathrm{H}_{2} \mathrm{X}$. The weak acid is titrated with 0.125 MNaOH . Assume the reaction to be
$\mathrm{H}_{2} \mathrm{X}(a q)+2 \mathrm{OH}^{-}(a q) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{X}^{1-}(a q)$
*(a) Beaker A contains 25.00 mL of $0.316 \mathrm{M} \mathrm{H}_{2} \mathrm{X}$. What volume of NaOH is required for complete neutralization?
** (b) Beaker B contains 25.00 mL of a solution of $\mathrm{H}_{2} \mathrm{X}$ and requires 28.74 mL of NaOH for complete neutralization. What is the molarity of the $\mathrm{H}_{2} \mathrm{X}$ solution?
*** (c) Beaker C contains 0.124 g of $\mathrm{H}_{2} \mathrm{X}$ and 25.00 mL of water. To reach the equivalence point, 22.04 mL of NaOH are required. What is the molar mass of $\mathrm{H}_{3} \mathrm{X}$?

Strategy Use the conversion factor obtained from the equation for the reaction:

$$
\frac{2 \mathrm{~mol} \mathrm{OH}^{-}}{1 \mathrm{~mol} \mathrm{HX}^{-X}}
$$

Also, remember

$$
n=V \times M \quad \text { and } \quad n=\begin{gathered}
m \\
M M
\end{gathered}
$$

Acids and Metals

- Many metals will react with acids, producing hydrogen gas

Reaction of Zinc with an Acid

- $\mathrm{Zn}(\mathrm{s})+2 \mathrm{H}^{+}(\mathrm{aq}) \quad \mathrm{Zn}^{2+}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
- Consider two half equations:
- Zn loses two electrons
- Zn (s) $\quad \mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{e}$
- H^{+}gains an electron
- $2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \quad \mathrm{H}_{2}(\mathrm{~g})$

Example 4.7 (cont'd)

Oxidation-Reduction Reactions

- Short name: Redox reactions
- Electron exchange
- Oxidation is a loss of electrons
- Reduction is a gain of electrons

Redox Principles

- Oxidation and reduction must occur together
- There is no net change in the number of electrons in a redox reaction

Cause and Effect

- Something must cause the zinc to lose two electrons
- This is the oxidizing agent - the H^{+}
- Something must cause the H^{+}to gain two electrons
- This is the reducing agent - the Zn
- Note that
- The oxidizing agent is reduced
- The reducing agent is oxidized
- Both of these appear as reactants (not products)

Oxidizing Agents

- We know that many nonmentals form anions
- To form an anion, a nonmetal must gain electrons
- Many nonmetals are good oxidizing agents

Reducing Agents

- Reducing agents become oxidized
- We know that metals commonly form cations
- Metals are generally reducing agents

Tracking Electrons - Oxidation Numbers

- As we look at the concept of oxidation numbers it is important to realize that
- Oxidation numbers are not real charges
- Oxidation numbers may or may not correspond to ion charges
- Oxidation numbers may be fractional

Rules Governing Oxidation Numbers

1. The oxidation number of an element in an elementary substance is zero.
2. The oxidation number of a element in a monatomic ion is the charge on the ion
3. Certain elements have the same oxidation number in most compounds
a. Group 1 metals are +1
b. Group 2 metals are +2
c. Oxygen is usually -2
d. Hydrogen is usually +1
4. Oxidation numbers sum to zero (compound) or to the charge (polyatomic ion)

Example 4.8

Example 4.8

What is the oxidation number of phosphorus in sodium phosphite, $\mathrm{Na}_{3} \mathrm{PO}_{3}$? In the dihydrogen phosphate ion?
Strategy First look for elements whose oxidation number is always or almost always the same (rule 3). Then solve for the oxidation number of phosphorus, applying rule 4
SOLUTION In $\mathrm{Na}_{5} \mathrm{PO}_{3}$, the oxidation numbers of Na and O are +1 and -2 , respectively. Since this compound, like all others, is neutral, the sum of the oxidation numbers must be zero. L.etting x be the oxidation number of phosphorus then,

$$
0=3(+1)+x+3(-2) \quad x=\text { oxidation number of } \mathrm{P}=+3
$$

In the $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$ion, hydrogen and oxygen have oxidation numbers of +1 and -2 , respectively. The ion has a charge of -1 , so the sum of the oxidation numbers musl be -1 (rule 4). Lelling y be the oxidation number of phosphorus,

$$
-1=y+2(+1)+4(-2) \quad y=\text { oxidation number of } \mathrm{P}=+5
$$

Redox Reactions and Oxidation Numbers

- Oxidation is an increase in oxidation number - This is the same as a loss of electrons
- Reduction is a decrease in oxidation number
- This is the same as a gain of electrons

Balancing Half-Equations (Oxidation or Reduction)
A. Balance the atom of the element being oxidized or reduced.
B. Balance the oxidation numbers by adding electrons
C. Balance charge by adding H^{+}(acid) or OH^{-}(base).
D. Balance hydrogens by adding $\mathrm{H}_{2} \mathrm{O}$.
E. Check to make sure oxygen is balanced.

Example 4.9

Example 4.9

(1) $\mathrm{MrO}_{4}(a q)$
-
$\rightarrow \mathrm{Mn}^{21}(\mathrm{ma})$ (acidic celution)

Strategy liollow the rules oullined alxwe, step by step in the proper order, and see
what happens.
solution
(1) (a) liecause there is one atom of Min an bath sides, na adjustment is required.
$\mathrm{NinO}_{4}(\mathrm{aq}) \longrightarrow \mathrm{Mn}^{2}(a q)$
(b) Because mangenex is reduced from an uxilution number of $+7 \mathrm{ko}+2$, ime
electrans mus be added to the lefil.
$\mathrm{MnO}^{-}-(\mathrm{uq})+5 \mathrm{t}^{-} \longrightarrow \mathrm{Mn}^{2+}(\mathrm{aw})$
(c) There is a total charge of -6 on the keft versus +2 on the fight. To belance, add sight H^{-}to the leff to give a charge of +2 on bota sides. $\mathrm{MaO}_{1}(a \mathrm{aq})+8 \mathrm{H}(\mathrm{ag})+5 e \longrightarrow \mathrm{Ma}^{2}(a \mathrm{aq})$
(d) To balanee the cight H^{+}ions on the left, add fiour $\mathrm{H}_{3} \mathrm{O}$ moveceles to the right $\mathrm{MnO}_{+}^{-}\left(\mathrm{aq}_{q}\right)+8 \mathrm{H}^{-}\left(\mathrm{aq}_{q}\right)+5 e^{-} \longrightarrow \mathrm{Mn}^{2}-\left(\mathrm{aq}_{q}\right)+4 \mathrm{H}_{2} \mathrm{O}$
(c) Nose that there are the same noumber of oxygeca atons, four, oa both sides, as there should be. The equation shown in grom is the corectly belaacel redoc tion half-cquation

Example 4.9 (cont'd)

(2) (a) Again, there is one chromium atom on both sides.

$$
\mathrm{Cr}(\mathrm{OH})_{3}(\mathrm{~s}) \longrightarrow \mathrm{CrO}_{4}{ }^{2}(\mathrm{aq})
$$

(b) Because the oxidation number of chromium increases from +3 to +6 , add three electrons to the right.

$$
\mathrm{Cr}(\mathrm{OH})_{3}(s) \longrightarrow \mathrm{CrO}_{4}{ }^{2-}(a q)+3 e
$$

(c) There is a charge of zero on the left, -5 on the right. To balance charge, add five OH^{-}ions to the left

$$
\mathrm{Cr}(\mathrm{OH})_{3}(s)+5 \mathrm{OH}^{-}(a q) \longrightarrow \mathrm{CrO}_{4}{ }^{2-}(a q)+3 e^{-}
$$

(d) There are eight hydrogens on the left, none on the right. Add four $\mathrm{H}_{2} \mathrm{O}$ molecules to the right.

$$
\mathrm{Cr}(\mathrm{OH})_{3}(s)+5 \mathrm{OH}^{-}(a q) \longrightarrow \mathrm{CrO}_{4}{ }^{2-}(a q)+4 \mathrm{H}_{2} \mathrm{O}+3 e^{-}
$$

(e) There are eight oxygen atoms on both sides; the oxidation half-equation is properly balanced.

Balancing Redox Equations

1. Split the equation into two half equations.
2. Balance one of the half equations.
3. Balance the other half equation.
4. Combine the two balanced half equations so as to eliminate electrons.

Hint

- In order to split the redox reaction into two half equations, determine the oxidation numbers first
- One element must be oxidized
- One element must be reduced

Example 4.10	
Example 4.10 Balance the following redox equations. (a) $\mathrm{Fc}^{2+}(a q)+\mathrm{MnO}_{4}^{-}(a q) \longrightarrow \mathrm{Fe}^{3+}(a q)+\mathrm{Mn}^{2+}(a q) \quad$ (acidic solution) (b) $\mathrm{Cl}_{2}(\mathrm{~g})+\mathrm{Cr}(\mathrm{OH})_{4}(\mathrm{~s}) \longrightarrow \mathrm{Cl}(\mathrm{aq})-\mathrm{CrO}_{4}{ }^{2}(\mathrm{aq}) \quad$ (basic solution) Strategy follow the four-step procedure described above. Actually, if you look carefully at the text preceding this example, you'll find that all the half-equations have already been balanced! the color coding should help you find them. SOLUTION (a) (1) oxidation: $\mathrm{Fe}^{3+}(\mathrm{aq}) \longrightarrow \mathrm{Fe}^{3+}(\mathrm{aq})$ reduction: $\mathrm{MnO}_{1}^{-}(a q) \longrightarrow \mathrm{Mn}^{2+}(a q)$ (2), (3) The balanced half-equations, as obtained previously, are $\begin{aligned} \mathrm{Fe}^{2+}(a q) & \longrightarrow \mathrm{Fe}^{3+}(a q)+e^{-} \\ \mathrm{MnO}_{4}^{-}(a q)+8 \mathrm{H}^{+}(a q)+5 e^{-} & \longrightarrow \mathrm{Mn}^{2+}(a q)+4 \mathrm{H}_{2} \mathrm{O} \end{aligned}$	

Example 4.10 (cont'd)

4) To climinate elactroms, mulliply the axitation hal -equation by 5 and add in the
reduction ball equation.

$\mathrm{MaO}_{4}(\mathrm{aqj})+\mathrm{SH}^{+}(\mathrm{aq})+\mathrm{5e} \longrightarrow \mathrm{Mn}^{2}(\mathrm{aq})+4 \mathrm{H}_{2} \mathrm{O}$ $\left.5 \mathrm{~F}^{2}-(a q)+\mathrm{MnO}_{-}^{-(a q)}\right)+8 \mathrm{H}^{+}(a q) \longrightarrow 5 \mathrm{Fe}^{3+}(a q)+\mathrm{Ma}^{2}-(\operatorname{aq})+4 \mathrm{H}_{2} \mathrm{O}$
(b) (1) feduction: $\mathrm{Cl},(\mathrm{g}) \longrightarrow \mathrm{Cl}(\mathrm{ar})$
midalixn: $\mathrm{Cr}(\mathrm{OH})_{s(s)} \longrightarrow \mathrm{CMO}_{4}{ }^{2}(\mathrm{am})$
(2), (3) Eariies, the belanoed lajif-equitions wex fousd to be Cikg) $2 \mathrm{e}^{-} \longrightarrow 2 \mathrm{Cl}^{-}$(an).
$\mathrm{Cr}(\mathrm{OH})<(s)+5 \mathrm{OH}\left(\mathrm{ma}_{j}\right) \longrightarrow \mathrm{CiO}_{4}^{2}(\mathrm{mq})-4 \mathrm{H}_{2} \mathrm{O}+3 *$
(4) Maltiply the reduction balf-cquation by 3 , bec oxidation balf-cquation by 2 then add This will prodike ofe on boct sides, so the will cancel. $3 \mathrm{Cl}_{2}(\mathrm{oj})+2 \mathrm{e} \longrightarrow 2 \mathrm{Cl}(\mathrm{ag})$
$2\left[\mathrm{Cr}(\mathrm{OH})_{2}(s)+5 \mathrm{OH}^{-}\langle\mathrm{aq}) \longrightarrow \mathrm{CrO}_{4}{ }^{-}-(\mathrm{aq})+4 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{C}^{-}\right]$
$3 \mathrm{Cl}_{4}(\mathrm{~g})+2 \mathrm{CrOH},(s)+10 \mathrm{OH}^{-}(\mathrm{aq}) \longrightarrow \mathrm{CCl}^{-}(\mathrm{aq})-2 \mathrm{CiO}_{4}{ }^{2}-(\mathrm{aq})-8 \mathrm{H}_{2} \mathrm{O}$
Reality Check Ifs a good idea to check mass and charge bellance in the final equation. In patt (b), for example.

Redox Titrations

- Redox reactions can be used to analyze an unknown in the same way as is done with acid-base reactions

Key Concepts - Reactions in Solution

1. Relate molarity to moles and volume.
2. Apply the precipitation diagram.
3. Carry out stoichiometric calculations for reactions in solution
4. Use tables 4.1 and 4.2 to write net-ionic acid-base reactions.
5. Determine oxidation numbers.
6. Balance half-equations and redox equations.
