Homework Chemistry Chapter 4 Number:

\qquad Name: \qquad
Choice the right answer:

1. () Which of the following has a negative charge?
A. nucleus
B. neutron
C. proton
D. electron
E. alpha particle
2. () Which two subatomic particles have approximately the same mass?
A. protons and neutrons
B. protons and electrons
C. electrons and nuclei
D. neutrons and electrons
E. protons and alpha particles
3. () The mass number of an atom is the number of \qquad in the atom.
A. Protons
B. neutrons
C. protons plus the number of electrons
D. protons plus the number of neutrons
E. electrons plus the number of neutrons
4. () Give the number of protons, neutrons, and electrons in an atom of the ${ }^{41} \mathrm{~K}$ isotope.
A. $19 \mathrm{p}, 22 \mathrm{n}, 22 \mathrm{e}$
B. 41 p, 19 n, 41 e
C. $19 \mathrm{p}, 22 \mathrm{n}, 19$ e
D. $19 \mathrm{p}, 16 \mathrm{n}, 19 \mathrm{e}$
E. 15 p, 26 n, 15 e
5. () Give the number of protons, neutrons, and electrons in the ${ }_{21}^{41} \mathrm{SC}^{3+}$ ion.
A. $21 \mathrm{p}, 20 \mathrm{n}, 21 \mathrm{e}$
B. $21 \mathrm{p}, 20 \mathrm{n}, 18 \mathrm{e}$
C. $21 \mathrm{p}, 20 \mathrm{n}, 24 \mathrm{e}$
D. $20 \mathrm{p}, 21 \mathrm{n}, 17 \mathrm{e}$
E. 21 p, 41 n, 18 e
6. () The number of \qquad can change without changing the element.
A. protons only
B. neutrons only
C. electrons only
D. all of the above
E. neutrons and electrons only
7. () The atomic weight of rubidium is 85.4678 amu . Rubidium consists of two isotopes, 85 Rb (72.15%) and $87 \mathrm{Rb}(27.85 \%)$. The mass of an atom of 85 Rb is 84.9117 amu . What is the mass of an atom of 87 Rb ?
A. 86.7271 amu
B. $\mathbf{8 6 . 8 0 1 3 ~ a m u}$
C. 86.8220 amu
D. $\mathbf{8 6 . 8 6 2 1 ~ a m u}$
E. 86.9085 amu
8. () Which of the following statements is false?
A. A set of \boldsymbol{p} orbitals in a given energy level are equal in energy.
B. The $5 d$ and $4 f$ orbitals are very close in energy.
C. The $4 s$ orbitals are lower in energy the $3 d$ orbitals.
D. An f set of orbitals is filled with 10 electrons.
E. The third energy level has $5 d$ orbitals.
9. () The third energy level or shell of an atom can hold a maximum of \qquad electrons.
A. 8
B. 2
C. 16
D. 18
E. 25
10. () Which of the following is not a valid magnetic quantum number for the 3d set of orbitals?
A. 1
B. 2
C. 0
D. -2
E. -3
11. () All orbitals of a given degenerate set must be singly occupied before pairing begins in that set is a statement of \qquad .
A. the Heisenberg Uncertainty Principle
B. the Bohr Theory
C. the Aufbau Principle
D. Planck's Theory
E. Hund's Rule
12. () Which of the following is the electron configuration of P in its ground state?
A. $1 s^{2} 1 p^{6} 2 s^{2} 2 p^{6}$
B. $1 s^{2} 2 s^{2} 2 p^{3} 3 p^{3} 3 d^{4}$
C. $1 s^{2} 2 s^{2} 2 p^{3} 3 s^{2} 3 p^{2}$
D. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{3}$
E. $1 s^{2} 2 s^{2} 2 p^{4} 3 s^{2} 3 p^{4}$
13. () Which statement is false?
A. If an electron has quantum number $n=3$, the electron could be in a \boldsymbol{d} sublevel.
B. If an electron has quantum number $I=2$, the only possible values of m_{l} are 0 and 1 .
C. If an electron has $m I=-1$, it might be in a p, d, or f sublevel but not in an s sublevel.
D. An electron that has $n=3$ cannot be in an f sublevel.
E. An electron that has $\boldsymbol{n}=\mathbf{5}$ could be in an s, p, d, or f sublevel.
14. () Paramagnetism is characteristic of systems containing \qquad .
A. no unpaired electrons
B. only p electrons as valence electrons
C. one or more unpaired electrons
D. only d electrons as valence electrons
E. only s electrons as valence electrons
15. () How many unpaired electrons are there in a neutral iodine atom (element 53)?
A. One
B. Two
C. Three
D. Four
E. Five
16. () Which of the following atoms has the greatest number of unpaired electrons in its ground state?
A. N
B. Cl
C. S
D. Ti
E. Cu
17. () An element has the outermost electron configuration ns2np4. The element could be \qquad .
A. $\mathbf{S i}$
B. 0
C. Br
D. Ar
E. Mn
18. () An element has the following outer electron configuration in its ground state, where n represents the highest occupied energy level: $(n-1) d^{10} n s^{1}$. Which of the elements listed below could it be?
A. K
B. Ag
C. Ge
D. Ga
E. Cd
