

Introduction to Gases

- Gases have been known to exist since ancient times
- The Greeks considered gases one of the four fundamental elements of nature
- $18^{\text {th }}$ Century
- Lavoisier, Cavendish and Priestley: Air is primarily nitrogen and oxygen, with trace components of argon, carbon dioxide and water vapor

Outline

- Measurements on Gases
- The Ideal Gas Law
- Gas Law Calculations
- Stoichiometry of Gaseous Reactions
- Gas Mixtures: Partial Pressures and Mole Fractions
- Kinetic Theory of Gases
- Real Gases

Current Interest

- Gases in the news
- Ozone depletion in the stratosphere
- Carbon dioxide and global warming

State Variables

- State variables describe the state of a system under study
- To specify the state of a gas, four quantities must be known
- Volume
- Amount
- Temperature
- Pressure

Volume, Amount and Temperature

- A gas expands uniformly to fill the container in which it is placed
- The volume of the container is the volume of the gas
- Volume may be in liters, mL, or cm^{3}
- The temperature of a gas must be indicated on the Kelvin scale
- Recall that $\mathrm{K}={ }^{\circ} \mathrm{C}+273.15$
- Amount of a gas is the number of moles

Pressure

- Pressure is force per unit area
- In the English system, pounds per square inch or psi
- Atmospheric pressure is about 14.7 psi

The Barometer

- The barometer measures pressure in terms of the height of a column on liquid mercury
- The atmosphere exerts a force on a pool of mercury, causing it to rise
- One standard atmosphere of pressure is a column of mercury 760 mm high
- Mercury is used to keep the column a manageable height

Measuring Pressure - The Barometer

Other Units of Pressure

- $1 \mathrm{~atm}=14.7 \mathrm{psi}$
- $1 \mathrm{~atm}=760 \mathrm{mmHg}$
- The mmHg is also called the Torr after Torricelli, inventor of the barometer
- SI unit of measurement, the pascal (Pa)
- 1 Pa is the pressure exerted by a 0.1 mm high film of water on the surface beneath it
- The bar $=10^{5} \mathrm{~Pa}$
- $1.013 \mathrm{bar}=1 \mathrm{~atm}=760 \mathrm{mmHg}=14.7 \mathrm{psi}=100$ kPa

Example 5.1

Example 5.1 At room temperature, dry ice (solid CO_{2}) becomes a gas. At $77^{\circ} \mathrm{F}_{3}$ 13.6 oz of dry ice are put into a sted tank with a volume of $10.00 \mathrm{fl}^{3}$. 'Ihe tank's pressure gauge registers 11.2 psi. Express the volume (V) of the tank in liters, the amount of CO in grams and moles (n), the temperature ((T) in ${ }^{\circ} \mathrm{C}$ and K and the pressure (P) in bars, mm Hg , and atmospheres.

Strategy Use the following conversion factors:

$\frac{14.7 \mathrm{psi}}{1 \mathrm{~atm}}$	$\frac{760 \mathrm{~mm} \mathrm{Hg}}{1 \mathrm{~atm}}$	$\frac{1.013 \mathrm{bar}}{1 \mathrm{~atm}}$
$44.0 \mathrm{~g} \mathrm{CO}_{2}$	28.32 I	0.03527 oz
$1 \mathrm{~mol} \mathrm{CO}_{2}$	$1 \mathrm{ft}^{3}$	1 g

Most of these conversion factors can be found in Table 1.3. For the temperature conversion, use the relation:

$$
t_{\mathrm{F}}=1.8 t_{\mathrm{C}_{\mathrm{C}}}+32
$$

The Ideal Gas Law

1. Volume is directly proportional to amount

- $\mathrm{V}=\mathrm{k}_{1} \mathrm{n}$ (constant T, P)

2. Volume is directly proportional to absolute temperature

- $\mathrm{V}=\mathrm{k}_{2} \mathrm{~T}$ (constant n, P)

The Ideal Gas Law

3. Volume is inversely proportional to pressure

- $V=k_{3} / P$ (constant n, T)

Example 5.1

SOLUTION

$$
\begin{aligned}
& V=10.00 \mathrm{ft}^{3} \times \frac{28.32 \mathrm{~L}}{1 \mathrm{ft}^{3}}=283.2 \mathrm{I} \\
& m=13.6 \mathrm{oz} \times \frac{1 \mathrm{~g}}{0.03527 \mathrm{oz}}=386 \mathrm{~g}
\end{aligned}
$$

$$
n_{\left(\mathrm{X}_{2}\right)}=386 \mathrm{~g} \times \frac{1 \mathrm{~mol}}{44.0 \mathrm{~g}}=8.77 \mathrm{~mol}
$$

$$
t_{\mathrm{C}}=\begin{gathered}
77-32 \\
1.8
\end{gathered}=25^{\circ} \mathrm{C}
$$

$$
T_{\mathrm{K}}=25+273=298 \mathrm{~K}
$$

$$
P=11.2 \mathrm{psi} \times \frac{1 \mathrm{~atm}}{14.7 \mathrm{psi}}=0.762 \mathrm{~atm}
$$

$$
P=0.762 \mathrm{~atm} \times \begin{gathered}
760 \mathrm{~mm} \\
1 \mathrm{~atm}
\end{gathered}=579 \mathrm{~mm} \mathrm{Hg}
$$

$$
P=0.762 \mathrm{~atm} \times \frac{1.013 \mathrm{bar}}{1 \mathrm{~atm}}=0.772 \mathrm{bar}
$$

Figure 5.3

(a)

(b)

The Ideal Gas Law

- Collect k_{1}, k_{2} and k_{3} into a new constant
- $\mathrm{PV}=\mathrm{nRT}$
- R is the gas constant
- Units of R :

$$
\mathrm{R}=0.0821 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}
$$

Standard Temperature and Pressure

- STP
- 1 atm P
- 273 K
- At STP, the molar volume of a gas can be calculated as follows:

$$
V=\frac{n R T}{P}=\frac{1 \mathrm{~mol} \times 0.0821 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}} \times 273 \mathrm{~K}}{1 \mathrm{~atm}}=22.4 \mathrm{~L}
$$

Final and Initial State Problems

- In this type of problem, a gas undergoes a change from its initial to its final state
- The ideal gas equation is written twice, once for the initial state (1) and once for the final state (2)

Table 5.1 - Units of R

ebvascon compertannor

Gas Law Calculations

- Final and initial state problems
- Single-state problems
- Density problem

Example 5.2

Example 5.2

A sealed 15.0-L steel tank is used to deliver propane $\left(\mathrm{C}_{3} \mathrm{H}_{4}\right)$ gas. It is
filled with 24.6 g of propane at $27^{\circ} \mathrm{C}$. The pressure gauge registers 0.915 atm . (Assume that the expansion of steel from an increase in temperature is negligible.)
(a) If the tank is heated to $58^{\circ} \mathrm{C}$, what is the pressure of propane in the tank?
(b) The tank is litted with a valve to open and release propane to maintain the pressure at 1.200 atm . Will heating the tank to $58^{\circ} \mathrm{C}$ release propane?
(c) At $200^{\circ} \mathrm{C}$, the pressure exceeds 1.200 atm . How much propane is released to maintain 1.200 atm pressure?

Strategy
(a) Read the problem carefully, and note that the volume of the tank and the number of moles of gas remain constant. (It is a sealed, steel tank.)
(b) Check both the calculated pressure at $58^{\circ} \mathrm{C}$ and the pressure at which propane is released.
(c) 'Ihe problem now has three variables. Only volume remains constant.

Example 5.2 (cont'd)

Because $P_{1}=0.915 \mathrm{~atm} ; T_{1}=300 \mathrm{~K} ; n_{1}=\begin{gathered}24.6 \mathrm{~g} \\ 44.1 \mathrm{~g} / \mathrm{mol}\end{gathered}=0.558 \mathrm{~mol} ; P_{2}=1.200 \mathrm{~atm} ;$
and $T_{2}=473 \mathrm{~K}$,

$$
\begin{aligned}
n_{2} & =n_{1} \times{ }_{P_{2}}^{P_{1}} \times{ }_{T_{1}}^{T_{2}} \\
& =0.558 \mathrm{~mol} \times \frac{1.200 \mathrm{~atm}}{0.915 \mathrm{~atm}} \times \frac{300 \mathrm{~K}}{473 \mathrm{~K}} \\
& -0.464 \mathrm{~mol}
\end{aligned}
$$

The tank had 0.558 moles at the start and 0.464 moles after the release of propane. Hence, 0.094 mol of propane ($\mathrm{MM}=44.1 \mathrm{~g} / \mathrm{mol}$) was released:

$$
0.094 \mathrm{~mol} \times \frac{44.1 \mathrm{~g}}{1 \mathrm{~mol}}=4.15 \mathrm{~g}
$$

Reality Check The volume of the tank is never used in any of the calculations for the different parts of the problem. The mass of the propane is relevant only in part (c).

Single state problems - Calculating $\mathrm{P}, \mathrm{V}, \mathrm{n}$ or T

- In this type of problem, one of the state variables is not known
- The ideal gas equation can be solved for the unknown
- Take care to follow the units through the calculation!

Example 5.3

Example 5.3 Sulfur hexafluoride is a gas used as a long-term tamponade (plug) for a relimal hole to repair detached retimas in the eye. 112.50 g of this compound is introduced into an evacuated 500.0 -ml. container at $83^{\circ} \mathrm{C}$, what pressure in atmospheres is developed?
Strategy Sulsstitute directly into the ideal gas law and solve for P. Note that V, μ, and T have to be in units consistent wilh $R=0.0821 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{mol} \cdot \mathrm{K}$.
SOLUTION Converting to the appropriate units,

$$
V=500.0 \mathrm{~mL} \times \frac{11 .}{1000 \mathrm{ml} .}=0.5000 \mathrm{~L}
$$

$$
T=83+273=356 \mathrm{~K}
$$

the molar mass of sulfur hexafluaride, SF_{6}, is 146.07 gmmol .

$$
n=2.50 \mathrm{~g} \times{ }_{146.07 \mathrm{~g}}^{1 \mathrm{~mol}}=0.0171 \mathrm{~mol}
$$

Substituting into the ideal gas law.

$$
P=\frac{n R T}{V}=\frac{0.0171 \mathrm{~mol} \times 0.0821 \mathrm{~L} \cdot \mathrm{~atm} /(\mathrm{mol} \cdot \mathrm{~K}) \times 356 \mathrm{~K}}{0.5000 \mathrm{~L}}=1.00 \mathrm{~atm}
$$

Molar Mass and Density

- Density = mass/volume
- Recall that the molar mass has units of grams (mass) per mole
- Now, look at the ideal gas law:
- The number of moles appears
- Moles, n, can be expressed as mass/MM
- There is also a volume term in the ideal gas law

Rewriting the Ideal Gas Law in Density Terms
$P V=\frac{m}{M M} R T$
$d=\frac{m}{V}=\frac{P \times M M}{R \times T}$

Density of Gases

- Density is an extensive property
- Does not depend on the amount of substance
- Density of a gas does depend on
- Pressure
- Temperature
- Molar mass

Balloons

Example 5.4

Example 5.4

Graded
Acetone is widely used as a nail polish remover. A sample of liquid acetone is placed in a $3.00-\mathrm{I}$. flask and vaporized by heating to $95^{\circ} \mathrm{C}$ at 1.02 atm . The vapor filling the flask at this temperature and pressure weighs 5.87 g .

* (a) What is the density of acetone vapor under these conditions?
** (b) Calculate the molar mass of acetone
$* * *$ (c) Acetone contains the three elements, C, H, and O . When 1.000 g of acetone is burned, 2.27 g of CO_{2} and 0.932 g of $\mathrm{H}_{2} \mathrm{O}$ are formed. What is the molecular formula of acetone?

Example 5.4 (cont'd)

```
solumow
4: dumsit, - mesese
```



```
    *Canmgath: quiren
    scrinctoc;ax
    dving fox vac
    O
```



```
    Conyering besemsessomde, wu sha.d ficicithat in
```


Example 5.5

Example 5.5
Hydrogen peroxide, $\mathrm{H}_{2} \mathrm{O}_{2}$, is a common bleaching agent. It decomposes quickly to water and oxygen gas at high temperatures.

$$
2 \mathrm{H}_{2} \mathrm{O}_{2}(l) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(l)+\mathrm{O}_{2}(\mathrm{~g})
$$

How many liters of oxygen are produced at $78^{\circ} \mathrm{C}$ and 0.934 atm when 1.27 I . of $\mathrm{H}_{2} \mathrm{O}_{2}$ ($d=1.00 \mathrm{~g} / \mathrm{mL}$) decompose?

Example 5.5 (cont'd)

Strategy Determine the mass of $\mathrm{H}_{2} \mathrm{O}_{2}$ using the density and convert ${ }^{\circ} \mathrm{C}$. to K . Use the following scheme:

$$
m_{\mathrm{H}, \mathrm{O}}, \xrightarrow{\text { MM }} n_{\mathrm{H}, \mathrm{O}} \xrightarrow[\text { ratio }]{\text { molar }} n_{0,}, \xrightarrow{p V=n R T} V_{0,}
$$

SOLUTION

$$
\begin{aligned}
& m_{\mathrm{H}_{\mathrm{S}} \mathrm{O}_{\mathrm{L}}}=1.27 \mathrm{~L} \times \begin{array}{c}
1000 \mathrm{mI} \\
1 \mathrm{~L}
\end{array} \times 1.00 \underset{\mathrm{~mL}}{\mathrm{~g}}=1270 \mathrm{~g} \\
& n_{\mathrm{H}_{2} \mathrm{O}_{2}}=1270 \mathrm{~g} \times{ }_{34.02 \mathrm{~g}}^{1 \mathrm{~mol}}=37.3 \mathrm{~mol} \\
& n_{\mathrm{O}_{2}}=37.3 \mathrm{~mol} \mathrm{H} \mathrm{O}_{2} \times \frac{1 \mathrm{~mol} \mathrm{O}_{2}}{2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}_{2}}=18.7 \mathrm{~mol} \mathrm{O} \mathrm{O}_{2} \\
& V_{\mathrm{O}_{3}}=\frac{18.7 \mathrm{~mol} \times 0.0821 \mathrm{~L}-\mathrm{atm} / \mathrm{mol} \mathrm{~K} \times(78+273) \mathrm{K}}{0.934 \mathrm{~atm}} \\
& =577 \mathrm{I} \text {. }
\end{aligned}
$$

Example 5.6

```
Example 5.6
Example 5.6 Graded
```



```
When acid is added to baking soda, tee tollowing reaction occurs
NaHCO(s)+\mp@subsup{H}{}{-}(aq)}\longrightarrow\mp@subsup{\textrm{Na}}{}{+}(aq)+\mp@subsup{\textrm{CO}}{2}{(g)}+\mp@subsup{\textrm{H}}{2}{2}\textrm{O
Al exfermensh ereare periormed with 2.45 M HCl and 12.75 g of NafCO, il
732mm Hg and 3\mp@subsup{8}{}{\circ}\textrm{C}.
*(a) If an excess of HCl is used, what velume of CO2 is obtained?
**(b) If NaHCO, is in excess, what yolume of HCl is recuired to produce 2.65 I of
**(D) If NaHCO3 is in excess, what volume of HCl is recured to produce 2.65 L. of
**(c) CO2?
        50.0\textrm{mL of HCl?}
Strategy Do not forget to convert temperature and pressure to the appropriate units.
```



```
(c) This is a limiting reaclant problem
```



```
Cse the ideal gas lave to cunvert the sumaller number of moles of CO}\mp@subsup{\textrm{CO}}{2}{}\mathrm{ to volume.
```


Example 5.6 (cont'd)

$$
\begin{aligned}
& \text { SOLUTION } \\
& \begin{aligned}
& \text { (a) } n_{\mathrm{X} 21 \mathrm{KO})_{1}}=12.75 \mathrm{~g} \times \frac{1 \mathrm{~mol}}{84.01 \mathrm{~g}}=0.1518 \mathrm{~mol} \\
& n_{\mathrm{CO}}=0.1518 \mathrm{~mol} \mathrm{NaHCO} 3 \times \frac{1 \mathrm{~mol} \mathrm{CO},}{1 \mathrm{~mol} \mathrm{NaHCO}}=0.1518 \mathrm{~mol} \\
& V_{\mathrm{CO},} \\
&=\frac{0.1518 \mathrm{~mol} \times 0.0821 \mathrm{~L}-\mathrm{atm} / \mathrm{mol}-\mathrm{K} \times(38 \quad 273) \mathrm{K}}{732 / 760 \mathrm{~atm}}=4.02 \mathrm{~L}
\end{aligned}
\end{aligned}
$$

Gas Mixtures: Partial Pressures and Mole

 Fractions- The ideal gas law applies to all gases, so it applies to mixtures of gases as well
- A new term is needed for a mixture of gases
- Partial pressure, the part of the total pressure due to each gas in the mixture
- Sum of the partial pressures is the total pressure

Dalton's Law of Partial Pressures

- The total pressure of a gas mixture is the sum of the partial pressures of the gases in the mixture
- Consider a mixture of hydrogen and helium:
- $\mathrm{PH}_{2}=2.46 \mathrm{~atm}$
- $\mathrm{P} \mathrm{He}=3.69 \mathrm{~atm}$
- P total $=6.15 \mathrm{~atm}$

Vapor Pressure

- The vapor pressure of a substance is the pressure of the gaseous form of that substance
- Vapor pressure is an intensive property
- Vapor pressure depends on temperature

Wet Gases

- $\mathrm{PH}_{2} \mathrm{O}$ is the vapor pressure of water
- $\mathrm{P} \mathrm{H}_{2} \mathrm{O}$ is dependent on temperature
- Consider H_{2} gas collected over water:

$$
P_{\text {tot }}=P_{\mathrm{H}_{2} \mathrm{O}}+P_{\mathrm{H}_{2}}
$$

Example 5.8 (cont'd)

SOLUTION

(a) From Appendix $1, P_{\mathrm{H}, \mathrm{O}}=23.76 \mathrm{~mm} \mathrm{Hg}$ at $25^{\circ} \mathrm{C}$. The total pressure, $P_{\mathrm{tas},}$ is 758 mm Hg

$$
P_{11_{\mathrm{z}}}=P_{1001}-P_{1 \mathrm{1}, \mathrm{O}}=758 \mathrm{~mm} \mathrm{Hg}-23.76 \mathrm{~mm} \mathrm{Hg}=734 \mathrm{~mm} \mathrm{Hg}
$$

(b) $n_{\mathrm{H}_{2}}={ }^{\left(P_{\mathrm{H}_{2}}\right) V}=(734 / 760 \mathrm{~atm})(0.152 \mathrm{I}$.
$0.00600 \mathrm{~mol} \mathrm{H}_{2}$

$$
\text { (b) } n_{\mathrm{H}_{2}}={ }_{R T}={ }_{(0.0821 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{mol} \cdot \mathrm{~K})(298 \mathrm{~K})}=0.00600 \mathrm{~mol} \mathrm{H}_{2}
$$

Collecting a Gas Over Water

- When a gas is collected over water, the total pressure is the pressure of the gas plus the vapor pressure of water

Example 5.8

Example 5.8
A student prepares a sample of hydrogen gas by electrolyzing water at $25^{\circ} \mathrm{C}$. She collects 152 mL of H_{2} at a total pressure of 758 mm Hg . Using Appendix 1 to find the vapor pressure of water, calculate
(a) the partial pressure of hydrogen
(b) the number of moles of hydrogen collected.

Strategy
(a) Use Dalton's law to find the partial pressure of hydrogen, $P_{H_{~}}$
(b) Use the ideal gas law to calculate $n_{\mathrm{H}_{2}}$, with $P_{\mathrm{H}_{2}}$ as the pressure

Partial Pressure and Mole Fraction

- One can rearrange the Ideal Gas Law for a mixture containing two gases, A and B

$$
\frac{P_{A}}{P_{\text {tot }}}=\frac{n_{A}}{n_{\text {tot }}}
$$

Mole Fraction

Dalton's Law and Mole Fraction

- The partial pressure of gas A is its mole fraction times the total pressure

$$
P_{A}=X_{A} P_{\text {tot }}
$$

Example 5.9 (cont'd)

$$
\begin{aligned}
& P_{\mathrm{CO}_{2}}=0.200 \times 1.26 \mathrm{~atm} \\
& P_{\mathrm{H}_{2} \mathrm{O}}=0.400 \times 1.26 \mathrm{~atm} \\
& P_{\mathrm{O}_{2}}=0.400 \times 1.26 \mathrm{~atm} \\
&=0.504 \mathrm{~atm} \\
& \hline
\end{aligned}
$$

Reality Check The partial pressures ($0.252 \mathrm{~atm}, 0.504 \mathrm{~atm}, 0.504 \mathrm{~atm}$) add up to the total pressure, 1.26 atm , as they should according to Dalton's law. They are also in the same ratio as the mole fractions $(0.200,0.400,0.400)$.

Kinetic Theory of Gases

The kinetic-molecular model

1. Gases are mostly empty space. The total volume of the molecules is small
2. Gas molecules are in constant, random motion
3. Collisions of gas particles are elastic
4. Gas pressure is caused by collisions of molecules with the walls of the container

Figure 5.7 - The Kinetic Molecular Model

New Variables

- N , the number of gas particles
- m, the mass of the gas particle
- u, the average speed of a gas particle

Average Kinetic Energy of Translational Motion

$$
E=\frac{3 R T}{2 N_{A}}
$$

- Notes:
- R is the gas constant
- T is the Kelvin temperature
- N_{A} is Avogadro's number

Average Speed, u

$$
u=\left(\frac{3 R T}{M M}\right)^{\frac{1}{2}}
$$

- The average speed is proportional to the square root of the Kelvin temperature
- The average speed is proportional to the inverse of the square root of the molar mass of the gas

Pressure and the Molecular Model

$$
P=\frac{N m u^{2}}{3 V}
$$

- Notes:
- N/V is the concentration of gas particles
- $m u^{2}$ is a measure of the energy of the collisions

Results from Kinetic Energy of Translational

 Motion- At a given temperature, all molecules of all gases have the same average kinetic energy of translational motion
- The average kinetic energy of a gas particle is directly proportional to the Kelvin temperature

Figure 5.8 - Ammonia and Hydrogen Chloride

Example 5.10

Example 5.10
Calculate the average speed, μ, of an N_{2} molecule at $25^{\circ} \mathrm{C}$.
Strategy Use the equation $u-(3 \text { RI/MM })^{1 i z}$; remember to use the proper value of $R=8.31 \times 10^{3} \mathrm{~g} \cdot \mathrm{~m}^{2} /\left(\mathrm{s}^{2}-\mathrm{mol} \cdot \mathrm{K}\right)$. Be careful aboul unils!
SOLUTION

$$
u=\left(\frac{3 R T}{\mathrm{MM}}\right)^{1 / 2}=\left[\frac{3 \times 8.31 \times 10^{\circ} \frac{\mathrm{g} \cdot \mathrm{~m}^{2}}{\mathrm{~s}^{2} \cdot \mathrm{~mol} \cdot \mathrm{~K}} \times 298 \mathrm{~K}}{28.02 \frac{\mathrm{~g}}{\mathrm{~m}+1)}}\right]^{1 / 2}=515 \mathrm{~m} / \mathrm{s}
$$

Reality Check Nolice that the average speed is very high. In miles per hour it is

$$
51.5 \frac{\mathrm{~m}}{\mathrm{~s}} \times \frac{1 \mathrm{mi}}{1.609 \times 10^{3} \mathrm{~m}} \times 3.600 \times 10^{3} \frac{\mathrm{~s}}{\mathrm{~h}}=1.15 \times 10^{2} \mathrm{mi} / \mathrm{h}
$$

Graham's Law of Effusion

$$
\frac{\text { rate of effusion of } B}{\text { rate of effusion of } A}=\left(\frac{\mathrm{MM}_{\mathrm{A}}}{\mathrm{MM}_{\mathrm{B}}}\right)^{\frac{1}{2}}
$$

- The rate at which gas B escapes divided by the rate at which gas A escapes is equal to the square root of the ratio of the molar mass of gas A to gas B

Example 5.11


```
X Xf unimewer melar mass at the smen T and p. It sfornd tast the pressane in the llas)
```



```
Strategy The key to solvinq, this groblern is la realize that hecmuse P,T, nnd V ar:
```



```
SOLUTON Comparing: be two ates in moles pet secoad
        #r.eAr =
Applyine Gimiarn'slaw
\[
{ }_{100-\left(\frac{\mathrm{xam}}{4} \mathrm{man}_{4}\right)^{10}}
\]
```



``` \(\mathrm{MM}_{\mathrm{x}}-\left(3595\right.\) gimol \(\times(2.54)^{2}-899\) gind
```

```
Reality Chech bsarrsa
```


Effusion of Gases

- Diffusion
- Gases move through space from a region of high concentration to a region of low concentration
- You can smell an apple pie baking as the particles responsible for the odor diffuse through the room
- Effusion
- Gas particles will escape through a small hole (orifice) in a container
- Air will slowly leak out of a tire or balloon through pores in the rubber

Gaseous Effusion and the Manhattan Project

- Effusion was used to separate U-238 from U-235
- Recall that isotopes have the same chemical properties, and so cannot be separated by chemical means
- The mass of ${ }^{238} \mathrm{UF}_{6}$ is heavier than the mass of ${ }^{235} \mathrm{UF}_{6}$
- Very small difference in mass
- ${ }^{235} \mathrm{UF}_{6}$ effuses more quickly because of its smaller mass

Distribution of Molecular Speeds

- At a given temperature, gas particles will have a set of speeds, not a single fixed value for speeds
- Maxwell-Boltzmann Distribution

Figure 5.9

Example 5.12

```
Example 5.12
    COnsicer tre tro toxes A ard B shown below. Box B bas a volune exacly tmice that of
    bux A.The Eircles ard * rpresen: one mole of IICl and Ite, verecelvely. The tho
    boxes are at the sorie temperature.
    a). Compire the presumesof the gases in
    (4) Compare the preswes of the gases in the
    (c) Compare Lae number of aloras in the two boses
    d) It be HCl in bax A nere trarslemed tw bax B, xhat wouli Be ber nowe Io
    IICD in the rixume?
    hich of the two gases effuess foser:
    SOLUTION
```



```
    (d) }\mp@subsup{x}{1\times2}{*}-2/6-1/
```


Real Gases

- Recall that the molar volume of a gas at STP is 22.4 L from the ideal gas law
- There are deviations from this volume that depend on the gas being studied
- The molar volume of a real gas is less than that calculated by the ideal gas law

Table 5.2

Liquefaction of Gases

- All gases can be liquefied
- Lowering the temperature
- Increasing the pressure
- When a gas is liquefied, the attractive forces between gas particles becomes significant
- The closer a gas is to the liquid state, the more it will deviate from the ideal gas law

Attractive Forces

- Note that the observed molar volume for gases is lower than that calculated by the ideal gas law
- The forces between particles pull the particles together
- The volume occupied by the gas is then decreased
- This is a negative deviation from the ideal gas law

Figure 5.10 - Deviation from Ideal Volume

Two Factors for Real Gases

- Two factors are important to real gases

1. The attractive forces between the gas particles
2. The volume of the gas particles

- Both of these are ignored by the ideal gas law

Particle Volume

- Consider a plot of the observed molar volume/ideal molar volume for methane vs. pressure
- Up to 150 atm, the deviation from ideality steadily increases
- The volume of the gas particles becomes a more significant factor in determining the volume of the gas as the pressure increases

Key Concepts

1. Conversion between P, V, T and n
2. Use of the ideal gas law to:

- Solve initial and final state problems
- Solve single-state problems
- Calculate the density of a gas
- Relate amounts of gases in reactions

3. Use Dalton's Law

4. Calculate the speed of gas molecules
5. Use Graham's Law to relate the rate of effusion to the molar mass of a gas
