

Introduction to Gases

- · Gases have been known to exist since ancient times
 - The Greeks considered gases one of the four fundamental elements of nature
- 18th Century
 - Lavoisier, Cavendish and Priestley: Air is primarily nitrogen and oxygen, with trace components of argon, carbon dioxide and water vapor

Current Interest

- · Gases in the news
 - · Ozone depletion in the stratosphere
 - · Carbon dioxide and global warming

State Variables

- State variables describe the state of a system under study
- To specify the state of a gas, four quantities must be known
 - Volume
 - Amount
 - Temperature
 - Pressure

Volume, Amount and Temperature

- A gas expands uniformly to fill the container in which it is placed
 - The volume of the container is the volume of the gas
 - Volume may be in liters, mL, or cm³
- The temperature of a gas must be indicated on the Kelvin scale
 - Recall that K = C + 273.15
- Amount of a gas is the number of moles

Pressure

- · Pressure is force per unit area
 - In the English system, pounds per square inch or psi
 - Atmospheric pressure is about 14.7 psi

The Barometer

- The barometer measures pressure in terms of the height of a column on liquid mercury
 - The atmosphere exerts a force on a pool of mercury, causing it to rise
 - One standard atmosphere of pressure is a column of mercury 760 mm high
 - Mercury is used to keep the column a manageable height

Gas Pressure Measurement

- The manometer measures gas pressure by differential
 - The height of the column of liquid is proportional to the pressure
 - Gas pressure can be more or less than atmospheric pressure

Other Units of Pressure

- 1 atm = 14.7 psi
- 1 atm = 760 mmHg
 - The mmHg is also called the Torr after Torricelli, inventor of the barometer
- SI unit of measurement, the pascal (Pa)
 - 1 Pa is the pressure exerted by a 0.1 mm high film of water on the surface beneath it
 - The bar = 10⁵ Pa
 - 1.013 bar = 1 atm = 760 mmHg = 14.7 psi = 100 kPa

Example 5.1				
Example 5.1 At a 13.6 oz of dry ice are p gauge registers 11.2 ps in grams and moles (n mm Hg, and atmosph Strateny. Use the fo	room temperation time as teel to a steel to	ure, dry ice (se ank with a vol 'olume (V) of t ure (T) in °C a	blid CO_2) becomes a g une of 10.00 ft ³ . The the tank in liters, the <i>i</i> and K and the pressur	tank's pressure annount of CO ₂ re (P) in bars,
Strategy Use the fol	lowing convers	ion factors:		
	14.7 psi 1 atm	1 atm	1.013 bar 1 atm	
	44.0 g CO ₂ 1 mol CO ₂	28.32 I. 1 ft ³	0.03527 oz 1 g	
Most of these conversion, use the relation:	ion factors can	be found in Ta	able 1.3. For the temp	erature conver-
	t-	$_{\rm F} = 1.8t_{\rm ^{+}C} + 3$	2	

Example 5.1	N.
SOLUTION	
$V = 10.00 \text{ fi}^3 \times \frac{28.32 \text{ L}}{1 \text{ fi}^3} = 283.2 \text{ I}.$	
$m = 13.6 \text{ oz} \times \frac{1 \text{ g}}{0.03527 \text{ oz}} = 386 \text{ g}$	
$n_{\rm GD_2} = 386 \text{ g} \times \frac{1 \text{ mol}}{44.0 \text{ g}} = 8.77 \text{ mol}$	
$b_{\rm C} = \frac{77 - 32}{1.8} = 25^{9}{\rm C}$	
$T_{\rm K} = 25 + 273 = 298 { m K}$	
$P = 11.2 \text{ psi} \times \frac{1 \text{ atm}}{14.7 \text{ psi}} = 0.762 \text{ atm}$	
$P = 0.762 \text{ atm} \times \frac{760 \text{ mm}}{1 \text{ atm}} = \frac{579 \text{ mm}}{579 \text{ mm}} \text{ Hg}$	
$P = 0.762 \text{ atm} \times \frac{1.013 \text{ bar}}{1 \text{ atm}} = 0.772 \text{ bar}$	

The Ideal Gas Law

- Volume is directly proportional to amount
 V = k₁n (constant T, P)
- 2. Volume is directly proportional to absolute temperature
 - $V = k_2 T$ (constant n, P)

Final and Initial State Problems

- · In this type of problem, a gas undergoes a change from its initial to its final state
- · The ideal gas equation is written twice, once for the initial state (1) and once for the final state (2)

Example 5.2

Example 5.2 A sealed 15.0-L steel tank is used to deliver propane (C₃H₈) gas. It is filled with 24.6 g of propane at $27^\circ C.$ The pressure gauge registers 0.915 atm. (Assume that the expansion of steel from an increase in temperature is negligible.)

- (a) If the tank is heated to 58°C, what is the pressure of propane in the tank? (b) The tank is fitted with a valve to open and release propane to maintain the pressure
- at 1.200 atm. Will heating the tank to 58°C release propane?
- (c) At 200°C, the pressure exceeds 1.200 atm. How much propane is released to maintain 1.200 atm pressure?

Strategy

- (a) Read the problem carefully, and note that the volume of the tank and the number of moles of gas remain constant. (It is a sealed, steel tank.)
- (b) Check both the calculated pressure at 58°C and the pressure at which propane is released.
- (c) 'The problem now has three variables. Only volume remains constant.

Single state problems – Calculating P, V, n or T

- In this type of problem, one of the state variables is not known
- The ideal gas equation can be solved for the unknown
- · Take care to follow the units through the calculation!

Molar Mass and Density

- Density = mass/volume
- Recall that the molar mass has units of grams (mass)
 per mole
- Now, look at the ideal gas law:
 - · The number of moles appears
 - Moles, n, can be expressed as mass/MM
 - · There is also a volume term in the ideal gas law

Rewriting the Ideal Gas Law in Density Terms	**
$PV = \frac{m}{MM} RT$	
$d = \frac{m}{V} = \frac{P \times MM}{R \times T}$	

Density of Gases

- · Density is an extensive property
 - · Does not depend on the amount of substance
- · Density of a gas does depend on
 - Pressure
 - Temperature
 - Molar mass

Stoichiometry in Gaseous Reactions

- Gases can participate as reactants or products in any chemical reaction
- Gases are balanced in the same way as liquids, solids, or aqueous solutions in chemical equations

Gas Mixtures: Partial Pressures and Mole Fractions

- The ideal gas law applies to all gases, so it applies to mixtures of gases as well
- · A new term is needed for a mixture of gases
 - Partial pressure, the part of the total pressure due to each gas in the mixture
 - · Sum of the partial pressures is the total pressure

Dalton's Law of Partial Pressures

- The total pressure of a gas mixture is the sum of the partial pressures of the gases in the mixture
- Consider a mixture of hydrogen and helium:
 - P H₂ = 2.46 atm
 - P He = 3.69 atm
 - P total = 6.15 atm

Vapor Pressure

· The vapor pressure of a substance is the pressure of the gaseous form of that substance

- · Vapor pressure is an intensive property
- · Vapor pressure depends on temperature

Collecting a Gas Over Water

· When a gas is collected over water, the total pressure is the pressure of the gas plus the vapor pressure of water

Example 5.8 (cont'd)

SOLUTION

(a) From Appendix 1, $P_{\rm H_2O}$ = 23.76 mm Hg at 25°C. The total pressure, $P_{\rm turb}$ is 758 mm Hg.

$$P_{\text{H}_2} = P_{\text{tot}} - P_{\text{H}_2\text{O}} = 758 \text{ mm Hg} - 23.76 \text{ mm Hg} = 734 \text{ mm Hg}$$
$$n_{\text{H}_2} = \frac{(P_{\text{H}_2})V}{(P_{\text{H}_2})V} = \frac{(734/760 \text{ atm})(0.152 \text{ L})}{(734/760 \text{ atm})(0.152 \text{ L})} = 0.00600 \text{ mol H}_2$$

(b)
$$n_{\rm H_2} = \frac{(\Gamma_{\rm H_2})^{7}}{RT} = \frac{(7347/60 \text{ atm})(0.152 \text{ L})}{(0.0821 \text{ L} \cdot \text{atm/mol} \cdot \text{K})(298 \text{ K})} = 0.00600 \text{ mol H}_2$$

Mole Fraction

20

• The mole fraction of gas A is the number of moles of A divided by the total number of moles of gas in the mixture

$$X_A = \frac{n_A}{n_{tot}}$$

Dalton's Law and Mole Fraction
• The partial pressure of gas A is its mole fraction
times the total pressure

$$P_A = X_A P_{tot}$$

The kinetic-molecular model

- 1. Gases are mostly empty space. The total volume of the molecules is small
- 2. Gas molecules are in constant, random motion
- 3. Collisions of gas particles are elastic
- 4. Gas pressure is caused by collisions of molecules with the walls of the container

New Variables

- -
- N, the number of gas particles
- m, the mass of the gas particle
- u, the average speed of a gas particle

Pressure and the Molecular Model

$$P = \frac{Nmu^2}{3V}$$

Notes:

- N/V is the concentration of gas particles
- mu² is a measure of the energy of the collisions

- T is the Kelvin temperature
- N_A is Avogadro's number

Results from Kinetic Energy of Translational Motion
At a given temperature, all molecules of all gases have the same average kinetic energy of translational motion
The average kinetic energy of a gas particle is directly proportional to the Kelvin temperature

Effusion of Gases

• Diffusion

- Gases move through space from a region of high concentration to a region of low concentration
 - You can smell an apple pie baking as the particles responsible for the odor diffuse through the room
- Effusion
 - Gas particles will escape through a small hole (orifice) in a container
 - Air will slowly leak out of a tire or balloon through pores in the rubber

Gaseous Effusion and the Manhattan Project

- Effusion was used to separate U-238 from U-235
 - Recall that isotopes have the same chemical properties, and so cannot be separated by chemical means
- The mass of $^{238}\mathrm{UF}_{6}$ is heavier than the mass of $^{235}\mathrm{UF}_{6}$
 - · Very small difference in mass
 - ²³⁵UF₆ effuses more quickly because of its smaller mass

Distribution of Molecular Speeds

• At a given temperature, gas particles will have a set of speeds, not a single fixed value for speeds

Maxwell-Boltzmann Distribution

Distribution of Molecular Speeds

- Plot the fraction of molecules having a given speed vs. the molecular speed
- Curve that results has a maximum in the number of molecules with the given speed
 - Most probable speed
- · As the temperature increases
 - · The maximum shifts toward higher speed
 - The relative number of molecules at that speed decreases

Real Gases

- Recall that the molar volume of a gas at STP is 22.4 L from the ideal gas law
- There are deviations from this volume that depend on the gas being studied
 - The molar volume of a real gas is less than that calculated by the ideal gas law

Table 5.2	Real Versus Ideal Gases, Percent Deviation* in Molar Volume							
P(atm)	02			CO ₂				
	50°C	0°C	-50°C	50°C	0°C	-50°		
1	-0.0%	-0.1%	-0.2%	-0.4%	-0.7%	-1.4%		
10	-0.4%	-1.0%	-2.1%	-4.0%	-7.1%			
40	-1.4%	-3.7%	-8.5%	-17.9%				
70	-2.2%	-6.0%	-14.4%	-34.2%	Condenses to liquid			
100	-2.8%	-7.7%	-19.1%	-59.0%				

Liquefaction of Gases

- · All gases can be liquefied
 - · Lowering the temperature
 - · Increasing the pressure
- When a gas is liquefied, the attractive forces between gas particles becomes significant
- The closer a gas is to the liquid state, the more it will deviate from the ideal gas law

Two Factors for Real Gases

- Two factors are important to real gases
 - 1. The attractive forces between the gas particles
 - 2. The volume of the gas particles
- Both of these are ignored by the ideal gas law

Attractive Forces

- Note that the observed molar volume for gases is lower than that calculated by the ideal gas law
 - The forces between particles pull the particles together
 - The volume occupied by the gas is then decreased
 - · This is a negative deviation from the ideal gas law

Particle Volume

- Consider a plot of the observed molar volume/ideal molar volume for methane vs. pressure
 - Up to 150 atm, the deviation from ideality steadily increases
 - The volume of the gas particles becomes a more significant factor in determining the volume of the gas as the pressure increases

Key Concepts

- 1. Conversion between P, V, T and n
- 2. Use of the ideal gas law to:
 - · Solve initial and final state problems
 - Solve single-state problems
 - · Calculate the density of a gas
 - · Relate amounts of gases in reactions
- 3. Use Dalton's Law
- 4. Calculate the speed of gas molecules
- 5. Use Graham's Law to relate the rate of effusion to the molar mass of a gas