Class:_	try Homework Chapter 7 Number: Name:					
1.	Which Lewis Dot Formula below is incorrect ?					
	a. ·ci:					
	b. B					
	c. Ç.					
	d. •Br:					
	e. Li•					
2.						
	a. Ca: b. •i•					
	, •••					
3.	e. Al• How many <u>unpaired</u> electrons are shown in a Lewis Dot Formula for silicon?					
	a. 0 b.1 c.2 d.3 e. 4					
4.	An atom of which element below has the most unpaired electrons?					
5	a. Ba b.Al c.P d.F e.O					
3.	Which choice below represents the general reaction of the 1A metals with the 7A elements? a. $2 \text{ M(s)} + \text{X}_2 \rightarrow 2 \text{ MX(s)}$ b. $\text{M(s)} + \text{X} \rightarrow \text{MX(s)}$ c. $\text{M}_2(\text{s}) + \text{X}_2 \rightarrow 2 \text{ MX(s)}$					
	d. $M(s) + X_2 \rightarrow MX_2(s)$ e. none of these					
6.	Magnesium and nitrogen react to form ${\rm Mg}_3{\rm N}_2$ an ionic compound. The magnesium ion, ${\rm Mg}^{2+}$, has					
	electrons in its highest occupied energy level. a. 8 b.2 c.10 d.4 e.5					
7	a. 8 b.2 c.10 d.4 e.5 What is the charge on the simple (single atom) ion that sulfur forms?					
/·	a. 1 ⁺ b. 2 ⁺ c. 3 ⁺ d. 1 ⁻ e. 2 ⁻					
8.	What is the formula for the binary ionic compound of aluminum and sulfur?					
	a. AlS b. Al_2S c. AlS_2 d. Al_3S_2 e. Al_2S_3					
9.	Which one of the formulas below is incorrect ?					
10	a. MgCl ₂ b. Na ₂ I c. InF ₃ d. K ₂ S e. SrO The ionic solid NaCl is more stable than a mixture of Na and Cl atoms. This is best					
10.	explained by:					
	a. The large, negative crystal lattice energy compensates for the energy lost					
	when forming Na ⁺ and Cl ⁻ . b. Both the electron affinity for Cl and the ionization energy for Na are negative					
	values.					
	c. The negative value for the electron affinity for Cl is larger than the ionization					
	energy required for Na. d. The negative value for the ionization energy required for Na is larger than the					
	electron affinity for Cl.					
	e. None of these is the correct explanation.					
11.	<u> </u>					
12.	a. One b. two c. three d. four e. zero The total number of covalent bonds in the N ₂ molecule is					
	a. One b. two c. three d. four e. zero					

 13.	The number of unshared pairs of electrons in the outer shell of arsenic in AsF ₃ is						
	a. One b. two c. three d. four e. zero						
	:Cl:As:Cl:						
1/	Assign a formal charge to each atom of						
 14,	a. $As = 5+$, $Cl = 1-$ b. $As = 5-$, $Cl = 7+$ c. $As = 0$, $Cl = 0$						
	d. $As = 4+$, $Cl = 1-$ e. $As = 6+$, $Cl = 2-$						
 15.	Which of the following statements about Lewis structures is false?						
	a. Carbon and oxygen may form a double bond.						
	 b. Any Noble gas involved in a bond must be violating the octet rule. c. N, P and As can sometimes share more than 8 e⁻. 						
	d. H can never make more than one bond.						
e. Quadruple bonds are not possible.							
 16.	1						
	atom, and no other molecules?						
	H ₂ O, NF ₃ , BF ₃ , OF ₂ a. H ₂ O b. NF ₃ c. NF ₃ and OF ₂ d. H ₂ O, NF ₃ , and OF ₂ e. H ₂ O and NF ₃						
17	Which one of the following violates the octet rule?						
 1/.	a. PCl ₄ ⁺ b. ClF c. CCl ₃ ⁻ d. BCl ₃ e. AsCl ₃						
18.	How many resonance structures does the nitrate ion, NO ₃ -, have?						
 10.	a. 1 b. 2 c. 3 d. 4 e. 0						
19.	Which response includes all of the molecules that have nonpolar bonds, and no others?						
	Cl ₂ , BeCl ₂ , I ₂ , BrCl, BCl ₃						
	a. Cl ₂ , BeCl ₂ , and I ₂ b. Cl ₂ and I ₂ c. Cl ₂ , BeCl ₂ , and BrCl						
	 a. Cl₂, BeCl₂, and I₂ b. Cl₂ and I₂ c. Cl₂, BeCl₂, and BrCl d. BeCl₂ and BCl₃ e. BrCl 						
 20.	d. BeCl ₂ and BCl ₃ e. BrCl The elements of Group VIIA may react with each other to form covalent compounds. Which of the						
 20.	d. BeCl ₂ and BCl ₃ e. BrCl The elements of Group VIIA may react with each other to form covalent compounds. Which of the following single covalent bonds in such compounds is the most polar bond?						
 20.	d. BeCl ₂ and BCl ₃ e. BrCl The elements of Group VIIA may react with each other to form covalent compounds. Which of the						
	d. $BeCl_2$ and BCl_3 e. $BrCl$ The elements of Group VIIA may react with each other to form covalent compounds. Which of the following single covalent bonds in such compounds is the most polar bond? Electronegativities of the first four Group VIIA elements are: $F = 4.0$, $Cl = 3.0$, $Br = 2.8$, $I = 2.5$						
	d. BeCl ₂ and BCl ₃ e. BrCl The elements of Group VIIA may react with each other to form covalent compounds. Which of the following single covalent bonds in such compounds is the most polar bond? Electronegativities of the first four Group VIIA elements are: F = 4.0, Cl = 3.0, Br = 2.8, I = 2.5 a. F-F b. F-Cl c. F-Br d. F-I e. Cl-I Which molecule contains the least polar bonds? (Electronegativities: H = 2.1, C = 2.5, F = 4.0, Cl = 3.0, Br = 2.8, I = 2.5)						
 21.	d. BeCl ₂ and BCl ₃ e. BrCl The elements of Group VIIA may react with each other to form covalent compounds. Which of the following single covalent bonds in such compounds is the most polar bond? Electronegativities of the first four Group VIIA elements are: F = 4.0, Cl = 3.0, Br = 2.8, I = 2.5 a. F-F b. F-Cl c. F-Br d. F-I e. Cl-I Which molecule contains the least polar bonds? (Electronegativities: H = 2.1, C = 2.5, F = 4.0, Cl = 3.0, Br = 2.8, I = 2.5) a. CF ₄ b. CCl ₄ c. CBr ₄ d. CI ₄ e. CH ₄						
 21.	d. BeCl ₂ and BCl ₃ e. BrCl The elements of Group VIIA may react with each other to form covalent compounds. Which of the following single covalent bonds in such compounds is the most polar bond? Electronegativities of the first four Group VIIA elements are: F = 4.0, Cl = 3.0, Br = 2.8, I = 2.5 a. F-F b. F-Cl c. F-Br d. F-I e. Cl-I Which molecule contains the least polar bonds? (Electronegativities: H = 2.1, C = 2.5, F = 4.0, Cl = 3.0, Br = 2.8, I = 2.5) a. CF ₄ b. CCl ₄ c. CBr ₄ d. CI ₄ e. CH ₄ Which molecule would have the weakest dipole moment?						
 21.22.	d. BeCl ₂ and BCl ₃ e. BrCl The elements of Group VIIA may react with each other to form covalent compounds. Which of the following single covalent bonds in such compounds is the most polar bond? Electronegativities of the first four Group VIIA elements are: F = 4.0, Cl = 3.0, Br = 2.8, I = 2.5 a. F-F b. F-Cl c. F-Br d. F-I e. Cl-I Which molecule contains the least polar bonds? (Electronegativities: H = 2.1, C = 2.5, F = 4.0, Cl = 3.0, Br = 2.8, I = 2.5) a. CF ₄ b. CCl ₄ c. CBr ₄ d. CI ₄ e. CH ₄ Which molecule would have the weakest dipole moment? a. HBr b. HF c. HI d. H ₂ e. HCl						
 21.22.	d. BeCl ₂ and BCl ₃ e. BrCl The elements of Group VIIA may react with each other to form covalent compounds. Which of the following single covalent bonds in such compounds is the most polar bond? Electronegativities of the first four Group VIIA elements are: F = 4.0, Cl = 3.0, Br = 2.8, I = 2.5 a. F-F b. F-Cl c. F-Br d. F-I e. Cl-I Which molecule contains the least polar bonds? (Electronegativities: H = 2.1, C = 2.5, F = 4.0, Cl = 3.0, Br = 2.8, I = 2.5) a. CF ₄ b. CCl ₄ c. CBr ₄ d. CI ₄ e. CH ₄ Which molecule would have the weakest dipole moment? a. HBr b. HF c. HI d. H ₂ e. HCl Which of the following molecules has the most ionic bond character?						
 21.22.23.	d. $BeCl_2$ and BCl_3 e. $BrCl$ The elements of Group VIIA may react with each other to form covalent compounds. Which of the following single covalent bonds in such compounds is the most polar bond? Electronegativities of the first four Group VIIA elements are: $F = 4.0$, $Cl = 3.0$, $Br = 2.8$, $I = 2.5$ a. $F - F$ b. $F - Cl$ c. $F - Br$ d. $F - I$ e. $Cl - I$ Which molecule contains the least polar bonds? (Electronegativities: $H = 2.1$, $C = 2.5$, $F = 4.0$, $Cl = 3.0$, $Br = 2.8$, $I = 2.5$) a. CF_4 b. CCl_4 c. CBr_4 d. CI_4 e. CH_4 Which molecule would have the weakest dipole moment? a. HBr b. HF c. HI d. H_2 e. HCl Which of the following molecules has the most ionic bond character? a. NCl_3 b. F_2 c. HF d. CIF e. HCl						
 21.22.23.	d. BeCl ₂ and BCl ₃ e. BrCl The elements of Group VIIA may react with each other to form covalent compounds. Which of the following single covalent bonds in such compounds is the most polar bond? Electronegativities of the first four Group VIIA elements are: F = 4.0, Cl = 3.0, Br = 2.8, I = 2.5 a. F-F b. F-Cl c. F-Br d. F-I e. Cl-I Which molecule contains the least polar bonds? (Electronegativities: H = 2.1, C = 2.5, F = 4.0, Cl = 3.0, Br = 2.8, I = 2.5) a. CF ₄ b. CCl ₄ c. CBr ₄ d. CI ₄ e. CH ₄ Which molecule would have the weakest dipole moment? a. HBr b. HF c. HI d. H ₂ e. HCl Which of the following molecules has the most ionic bond character? a. NCl ₃ b. F ₂ c. HF d. CIF e. HCl						
 21.22.23.	d. BeCl ₂ and BCl ₃ e. BrCl The elements of Group VIIA may react with each other to form covalent compounds. Which of the following single covalent bonds in such compounds is the most polar bond? Electronegativities of the first four Group VIIA elements are: F = 4.0, Cl = 3.0, Br = 2.8, I = 2.5 a. F-F b. F-Cl c. F-Br d. F-I e. Cl-I Which molecule contains the least polar bonds? (Electronegativities: H = 2.1, C = 2.5, F = 4.0, Cl = 3.0, Br = 2.8, I = 2.5) a. CF ₄ b. CCl ₄ c. CBr ₄ d. Cl ₄ e. CH ₄ Which molecule would have the weakest dipole moment? a. HBr b. HF c. HI d. H ₂ e. HCl Which of the following molecules has the most ionic bond character? a. NCl ₃ b. F ₂ c. HF d. ClF e. HCl What kind of bond does the transfer of electrons between atoms produce?						
 21.22.23.24.	d. BeCl ₂ and BCl ₃ e. BrCl The elements of Group VIIA may react with each other to form covalent compounds. Which of the following single covalent bonds in such compounds is the most polar bond? Electronegativities of the first four Group VIIA elements are: F = 4.0, Cl = 3.0, Br = 2.8, I = 2.5 a. F-F b. F-Cl c. F-Br d. F-I e. Cl-I Which molecule contains the least polar bonds? (Electronegativities: H = 2.1, C = 2.5, F = 4.0, Cl = 3.0, Br = 2.8, I = 2.5) a. CF ₄ b. CCl ₄ c. CBr ₄ d. CI ₄ e. CH ₄ Which molecule would have the weakest dipole moment? a. HBr b. HF c. HI d. H ₂ e. HCl Which of the following molecules has the most ionic bond character? a. NCl ₃ b. F ₂ c. HF d. CIF e. HCl What kind of bond does the transfer of electrons between atoms produce? a. nonpolar covalent b. polar covalent c. ionic d. coordinate covalent An ionic bond is most likely to be formed between a. a metal of low ionization energy and a nonmetal of low (very positive) electron						
 21.22.23.24.	d. BeCl ₂ and BCl ₃ e. BrCl The elements of Group VIIA may react with each other to form covalent compounds. Which of the following single covalent bonds in such compounds is the most polar bond? Electronegativities of the first four Group VIIA elements are: F = 4.0, Cl = 3.0, Br = 2.8, I = 2.5 a. F-F b. F-Cl c. F-Br d. F-I e. Cl-I Which molecule contains the least polar bonds? (Electronegativities: H = 2.1, C = 2.5, F = 4.0, Cl = 3.0, Br = 2.8, I = 2.5) a. CF ₄ b. CCl ₄ c. CBr ₄ d. CI ₄ e. CH ₄ Which molecule would have the weakest dipole moment? a. HBr b. HF c. HI d. H ₂ e. HCl Which of the following molecules has the most ionic bond character? a. NCl ₃ b. F ₂ c. HF d. CIF e. HCl What kind of bond does the transfer of electrons between atoms produce? a. nonpolar covalent b. polar covalent c. ionic d. coordinate covalent An ionic bond is most likely to be formed between a. a metal of low ionization energy and a nonmetal of low (very positive) electron affinity.						
 21.22.23.24.	d. BeCl ₂ and BCl ₃ e. BrCl The elements of Group VIIA may react with each other to form covalent compounds. Which of the following single covalent bonds in such compounds is the most polar bond? Electronegativities of the first four Group VIIA elements are: F = 4.0, Cl = 3.0, Br = 2.8, I = 2.5 a. F-F b. F-Cl c. F-Br d. F-I e. Cl-I Which molecule contains the least polar bonds? (Electronegativities: H = 2.1, C = 2.5, F = 4.0, Cl = 3.0, Br = 2.8, I = 2.5) a. CF ₄ b. CCl ₄ c. CBr ₄ d. CI ₄ e. CH ₄ Which molecule would have the weakest dipole moment? a. HBr b. HF c. HI d. H ₂ e. HCl Which of the following molecules has the most ionic bond character? a. NCl ₃ b. F ₂ c. HF d. CIF e. HCl What kind of bond does the transfer of electrons between atoms produce? a. nonpolar covalent b. polar covalent c. ionic d. coordinate covalent An ionic bond is most likely to be formed between a. a metal of low ionization energy and a nonmetal of low (very positive) electron						
21.22.23.24.	 d. BeCl₂ and BCl₃ e. BrCl The elements of Group VIIA may react with each other to form covalent compounds. Which of the following single covalent bonds in such compounds is the most polar bond? Electronegativities of the first four Group VIIA elements are: F = 4.0, Cl = 3.0, Br = 2.8, I = 2.5 a. F-F b. F-Cl c. F-Br d. F-I e. Cl-I Which molecule contains the least polar bonds? (Electronegativities: H = 2.1, C = 2.5, F = 4.0, Cl = 3.0, Br = 2.8, I = 2.5) a. CF₄ b. CCl₄ c. CBr₄ d. CI₄ e. CH₄ Which molecule would have the weakest dipole moment? a. HBr b. HF c. HI d. H₂ e. HCl Which of the following molecules has the most ionic bond character? a. NCl₃ b. F₂ c. HF d. CIF e. HCl What kind of bond does the transfer of electrons between atoms produce? a. nonpolar covalent b. polar covalent c. ionic d. coordinate covalent An ionic bond is most likely to be formed between a. a metal of low ionization energy and a nonmetal of low (very positive) electron affinity. b. a metal of high ionization energy and a nonmetal of low (very positive) 						
21.22.23.24.	d. BeCl ₂ and BCl ₃ e. BrCl The elements of Group VIIA may react with each other to form covalent compounds. Which of the following single covalent bonds in such compounds is the most polar bond? Electronegativities of the first four Group VIIA elements are: F = 4.0, Cl = 3.0, Br = 2.8, I = 2.5 a. F-F b. F-Cl c. F-Br d. F-I e. Cl-I Which molecule contains the least polar bonds? (Electronegativities: H = 2.1, C = 2.5, F = 4.0, Cl = 3.0, Br = 2.8, I = 2.5) a. CF ₄ b. CCl ₄ c. CBr ₄ d. Cl ₄ e. CH ₄ Which molecule would have the weakest dipole moment? a. HBr b. HF c. HI d. H ₂ e. HCl Which of the following molecules has the most ionic bond character? a. NCl ₃ b. F ₂ c. HF d. CIF e. HCl What kind of bond does the transfer of electrons between atoms produce? a. nonpolar covalent b. polar covalent c. ionic d. coordinate covalent An ionic bond is most likely to be formed between a. a metal of low ionization energy and a nonmetal of low (very positive) electron affinity. b. a metal of high ionization energy and a nonmetal of high (very negative) electron affinity.						

Chapter 7 Answer Section

MULTIPLE CHOICE

1.	ANS:	В	PTS:	1	TOP:	Lewis Dot Formulas of Atoms			
2.	ANS:	C	PTS:	1	DIF:	* Harder Question			
	TOP:	Lewis Dot Formulas of Atoms							
3.	ANS:	C	PTS:	1	TOP:	Lewis Dot Formulas of Atoms			
4.	ANS:	C	PTS:	1	DIF:	* Harder Question			
	TOP:	Lewis Dot Formulas of Atoms							
5.	ANS:	A	PTS:	1	TOP:	Formation of Ionic Compounds			
6.	ANS:	A	PTS:	1	TOP:	Formation of Ionic Compounds			
7.	ANS:	E	PTS:	1	TOP:	Formation of Ionic Compounds			
8.	ANS:	E	PTS:	1	TOP:	Formation of Ionic Compounds			
9.	ANS:	В	PTS:	1	TOP:	Formation of Ionic Compounds			
10.	ANS:	A	PTS:	1	TOP:	Formation of Ionic Compounds			
11.	ANS:	В	PTS:	1	TOP:	Writing Lewis Formulas: The Octet Rule			
12.	ANS:	C	PTS:	1	TOP:	Writing Lewis Formulas: The Octet Rule			
13.	ANS:	A	PTS:	1	TOP:	Writing Lewis Formulas: The Octet Rule			
14.	ANS:	C	PTS:	1	TOP:	Formal Charge			
15.	ANS:	C	PTS:	1					
	TOP:	Writing Lewis Formulas: Limitations of the Octet Rule for Lewis Formulas							
16.	ANS:	В	PTS:	1					
	TOP:	Writing Lewis	Formu	ılas: Limitation	s of the	Octet Rule for Lewis Formulas			
17.	ANS:		PTS:						
		-				Octet Rule for Lewis Formulas			
18.	ANS:		PTS:	1	TOP:	Resonance			
19.	ANS:	В	PTS:	1	TOP:	Polar and Nonpolar Covalent Bonds			
20.	ANS:	D	PTS:	1		Polar and Nonpolar Covalent Bonds			
21.	ANS:	D	PTS:	1	TOP:	Polar and Nonpolar Covalent Bonds			
22.	ANS:	D	PTS:	1	TOP:	Dipole Moments			
23.	ANS:	C	PTS:	1	TOP:	The Continuous Range of Bonding Types			
24.	ANS:	C	PTS:	1	TOP:	Additional Questions			
25.	ANS:	D	PTS:	1	TOP:	Additional Questions			