

Heat - Some Things to Think About

- · What is heat?
- · How do we measure heat?
- What connection is there between heat and matter at the molecular level?

Heat

- · Heat will flow from a hotter object to a colder object
 - · Mix boiling water with ice
 - · Temperature of the ice rises after it melts
 - · Temperature of the water falls

Principles of Heat Flow

- · Definitions
 - The system: that part of the universe on which attention is focused
 - The surroundings: the rest of the universe
 - Practically speaking, it is possible to consider only the surroundings that directly contact the system

Chemical Reactions

- When we study a chemical reaction, we consider the system to be the reactants and products
- The surroundings are the vessel (beaker, test tube, flask) in which the reaction takes place plus the air or other material in thermal contact with the reaction system

State Properties

- The state of a system is specified by enumerating:
 - Composition
 - Temperature
 - Pressure
- State properties depend only on the state of the system, not on the path the system took to reach the state
- Mathematically for a state property X:
 - X is the *change* in X
 - $X = X_{final} X_{initial}$

Direction and Sign of Heat Flow

- · Heat is given the symbol, q
 - q is positive when heat flows into the system from the surroundings
 - q is negative when heat flows from the system into the surroundings
- · Endothermic processes have positive q

•
$$H_2O(s) \rightarrow H_2O()$$
 q >

- Exothermic processes have negative q
 - $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + H_2O() q < 0$

Magnitude of Heat Flow

- In any process, we are interested in both the direction of heat flow and in its magnitude
 - q is expressed in joules (or kilojoules)
 - James Joule (1818-1889); calorimetry
 - · Alternate unit: calorie
 - 1 calorie = 4.184 J
 - 1 kilocalorie = 4.184 kJ
 - Nutritional calories are kcal

The Calorimetry Equation

• q = C x t

- $t = t_{final} t_{initial}$
- C (uppercase) is the heat capacity of the system: it is the quantity of heat needed to raise the temperature of the system by 1 °C
- q = m x c x t
 - *c (lowercase)* is the specific heat: the quantity of heat needed to raise the temperature of one gram of a substance by 1 °C
- c depends on the identity and phase of the substance

Specific Heat

- The specific heat of a substance, like the density or melting point, is an intensive property that can be used to identify a substance or determine its purity
 Water
 - Water has an unusually large specific heat
 - A large quantity of heat is required to raise the temperature of water
 - · Climate is moderated by the specific heat of water
 - Only two states in the US have never recorded temperatures over 100 °F – one is Alaska (cold North) and the other is Hawaii (moderated by water)

Bomb Calorimeter

- The bomb calorimeter is more versatile than the coffee-cup calorimeter
 - Reactions involving high temperature
 - Reactions involving gases
- The bomb is a heavy metal vessel that is usually surrounded by water
- q_{reaction} = -q_{calorimeter}
- $q_{reaction} = -C_{cal} t$
- C_{cal} is a function of the calorimeter and can be measured experimentally

Enthalpy
The heat flow at constant pressure is equal to the difference in enthalpy (heat content) between products and reactants
 The symbol for enthalpy is H
• We measure changes in enthalpy using a calorimeter and a reaction run at constant pressure:
• H = H _{products} - H _{reactants}
 The sign of the enthalpy change is the same as for heat flow:
 H > 0 for endothermic reactions
 H < 0 for exothermic reactions
Enthalpy is a state variable

Thermochemical Equations

- A thermochemical equation is a chemical equation with the H for the reaction included
- Example
 - NH_4NO_3 (s) $\rightarrow NH_4^+$ (aq) + NO_3^- (aq)
 - Experiment gives qreaction = 351 J for one gram of ammonium nitrate
 For one mole, this is
 - - $\frac{351J}{1.00g} \times \frac{80.05g}{1mol} = 2.81X10^4 J = 28.1kJ$
 - · The thermochemical equation is
 - NH_4NO_3 (s) $\rightarrow NH_4^+$ (aq) + NO_3^- (aq) H = +28.1 kJ

Conventions for Thermochemical Equations

- 1. The sign of H indicates whether the reaction is endothermic or exothermic
- 2. The coefficients of the thermochemical equation represent the number of moles of reactant and product
- 3. The phases of all reactant and product species must be stated
- 4. The value of H applies when products and reactants are at the same temperature, usually 25 °C

Rules of Thermochemistry

- 1. The magnitude of H is directly proportional to the amount of reactant or product
- 2. H for the reaction is equal in magnitude but opposite in sign for H for the reverse of the reaction
- 3. The value of H is the same whether the reaction occurs in one step or as a series of steps
 - This rule is a direct consequence of the fact that H is a state variable
 - This rule is a statement of Hess's Law

Example 8.6
Example 8.6 Carbon monoxide, CO, is a poisonous gas. It can be obtained by burning carbon in a limited amount of oxygen. Given (1) $C(s) + O_2(g) \longrightarrow CO_2(g) \Delta H = -393.5 \text{ kJ}$ (2) $2CO(g) + O_2(g) \longrightarrow 2CO_2(g) \Delta H = -566.0 \text{ kJ}$ calculate ΔH for the reaction $C(s) + \frac{1}{2}O_2(g) \longrightarrow CO(g) \Delta H = ?$
Strategy The "trick" here is to work with the given information until you arrive at two equations that will add to give the equation you want $(C + \frac{1}{2}O_2 \rightarrow CO)$. To do this, focus on CO, which, unlike CO ₂ and O ₃ appears in only one thermochemical equation. Notice that you want <i>one</i> mole (not two) of CO on the <i>right</i> side (not the left side) of the equation.

• There is no change in temperature during a phase change

 ΔH_{tur}

9.84

10.8

2.33 19.3

6.00

bp (°C)

80

59

357 218

100

ΔH_{vap}*

30.8

29.6

59.4 43.3

40.7

• Pure substances have a value of H that corresponds to

mp (°C)

5

-39 80

0

*Values of ΔH_{bs} are given at the melting point, values of ΔH_{ab} at the boiling point. The I from 44.9 kJ/mol at 00°C to 44.0 kJ/mol at 25°C to 40.7 kJ/mol at 100°C.

melting (reverse, fusion) or vaporization (reverse,

Enthalpy of Phase Changes

Phase changes involve enthalpy

condensation)

Substance

Benzene

Bromine

Water

Mercury Naphthalene

from 44.9 kJ/m

· Endothermic: melting or vaporization

· Exothermic: freezing or condensation

Table 8.2 ΔH (kJ/mol) for Phase Changes

C₀H₆ Br₂ Hg C₁₀H₈ H₂O

Example 8.6, (Cont'd)							
SOLUTION To get one mole of CO on the right side, reverse equation (2) and divide the coefficients by 2. Applying rule 1 and rule 2 in succession,							
$CO_2(g) \longrightarrow CO(g) + \frac{1}{2}O_2(g)$ $\Delta H = +566.0 \text{ kJ}/2 = +283.0 \text{ kJ}$							
Now, add equation (1) and simplify:							
$\begin{array}{rcl} & & & & & & \\ & & & & & \\ CO_2(g) & \longrightarrow CO_2(g) & + \frac{1}{2}O_2(g) & & & & & \\ & & & & & \\ (1) & & & & C(s) + O_2(g) & \longrightarrow CO_2(g) & & & & & \\ & & & & & & \\ \end{array}$							
$C(s) + \frac{1}{2}O_2(g) \longrightarrow CO(g)$ $\Delta H = -110.5 \text{ kJ}$							
Reality Check Notice that thermochemical equations can be added in exactly the same manner as algebraic equations; in this case $1CO_2$ and $\frac{1}{2}O_2$ canceled when the equations were added.							
L							

6

Recap of the Rules of Thermochemistry

- H is directly proportional to the amount of reactant or product
 - If a reaction is divided by 2, so is H
 - If a reaction is multiplied by 6, so is H
 - H changes sign when the reaction is reversed
- H has the same value regardless of the number of steps

Enthalpies of Formation

- The standard molar enthalpy of formation, △H, is equal to the enthalpy change
 - · For one mole of a compound
 - At constant pressure of 1 atm
 - At a fixed temperature of 25 °C
 - From elements in their stable states at that temperature and pressure
- Enthalpies of formation are tabulated in Table 8.3 and in Appendix 1 in the back of the textbook

lable	8.3									
Table 8.3 Standard Enthalpies of Formation at 25°C (kJ/mol) of Compounds at 1 atm, Aqueous lons at 1 Compounds										
AgEnt al	-100.4	CeClast	-795.0	H(0)@	-241.8	NH ₄ NO ₃ (e)	-385.0			
ApO(s)	-127.1	$C_2CO_2(s)$	-1206.9	H ₂ O(4)	-285.8	NO(g)	+ 90.2			
Aglist	-61.8	CaO(a)	-635.1	Hy0y(?)	-1878	NO ₂ [g]	+38.3			
AgNO ₂ (s)	-124.4	Co(CHG(x)	-956.1	H _s S(g)	-20.0	N;0;(g)	+9.3			
$\Lambda_{22}(0 s)$	-31.0	CaSO ₄ (s)	-1434.1	H ₆ SO-M	-814.0	NaCia	-4112			
AbDyla	-1875.7	CdCl ₂ (e)	-361.5	HgC(r)	-90.6	Nafi(s)	-573.			
BaC y(s)	-898.5	03004	-258.2	KErdat	- 393.8	NeOFIal	-425.			
Balloya	-1216.3	0:00(0	-1139.7	KCI(a)	-436.2	NiC(s)	-735			
Ballet	-563.5	D10(d	-137.3	KCIO 4:4	-397.7	PbBr./s)	-279.			
BaS0.(d)	-1473.2	$O_{12}O(s)$	-168.6	KCIO-14	-432.6	PbCl ₃ [z]	-359.			
00146	-135.4	018(8	- 53.1	KNOya)	-494.6	PbO(s)	-219			
CHC ₃ ()	-134.5	012814	- 79.5	MgCly(s)	-641.3	PbO ₅ (s)	-2//			
CH.(g)	-74.9	$D_1SO_4(s)$	-771.4	MgCOJd	-1095.9	$PCl_{\theta}(g)$	-207.			
Callsight	+228.7	Fe(CHIg(s)	-823.0	Mg0(s)	-601.7	PCl ₂ (g)	-374			
C ₂ HJ ₂ (+52.3	FegO ₂ (s)	-824.2	Mg(0H)_(s)	-924.5	$S(O_{2}(s))$	-910			
C ₂ H ₄ (g)	-84.7	FoyOuts)	-1118.4	MgSQJal	-1284.9	SnDy(a)	-580			
C ₂ HJ ₂ A	-103.8	FBrigt	-36.4	Mn0(s)	-385.2	$SO_{n}(\alpha)$	-796			
CHEOH(7)	-239.7	FCI(a)	-\$2.3	MnOstel	-520.0	SO ₂ (a)	-395			
C ₂ H ₂ OH()(-277.7	Fflat	-271.1	NH ₂ /gt	-46.1	Zristel	-206			
00/a	-110.5	FICo)	± 26.5	NaHalit	+50.6	ZnO(s)	- 348			
00.14	-393.5	ENO ₄ /)	-1/4.1	NE ₄ C [s]	-314.4	ZnS(s)	-706			

Table 8.3, (Cont'd)		
	Cat	ions	
Ag ⁺ (<i>aq</i>) Al ²⁺ (<i>aq</i>) Ba ²⁺ (<i>aq</i>) Ca ²⁺ (<i>aq</i>) Cd ²⁺ (<i>aq</i>) Cu ⁻ (<i>aq</i>) Cu ²⁺ (<i>aq</i>) Fe ²⁺ (<i>aq</i>) Fe ²⁺ (<i>aq</i>)	+105.6 -531.0 -537.6 -542.8 -75.9 +71.7 +64.8 -89.1 -48.5	Hg ²⁺ (<i>aq</i>) K ⁺ (<i>aq</i>) Mg ²⁺ (<i>aq</i>) Na ⁻ (<i>aq</i>) NH ₄ +(<i>aq</i>) Ni ²⁻ (<i>aq</i>) Pb ²⁻ (<i>aq</i>) Sn ²⁺ (<i>aq</i>) 7-2 ⁻ (<i>ca</i>)	+171.1 -252.4 -466.8 -220.8 -240.1 -132.5 -54.0 -1.7 -8.8
n' (ay)	0.0	Z11° (<i>84</i>)	- 155.5

Table 8.3, (Co			
	Ani	ions	
Br ⁻ (<i>aq</i>)	-121.6	HPO ₄ 2-(<i>aq</i>)	- 1292.1
CO32-(aq)	-677.1	HSO4-(aq)	-887.3
CI-(aq)	-167.2	$I^{-}(aq)$	-55.2
CIO3-(aq)	-104.0	MnO ₄ -(aq)	-541.4
$CIO_4^-(aq)$	- 129.3	NO ₂ -(<i>aq</i>)	-104.6
CrO42-(aq)	-881.2	NO ₃ -(<i>aq</i>)	-205.0
Cr ₂ O ₇ 2-(<i>aq</i>)	-1490.3	0H-(<i>aq</i>)	-230.0
F-(<i>aq</i>)	-332.6	PO43-(aq)	-1277.4
HCO3-(aq)	-692.0	S2-(aq)	+33.1
$H_2PO_4^-(aq)$	-1296.3	SO∠ ^{2−} (<i>aq</i>)	-909.3

Enthalpies of Formation of Elements and of H⁺ (aq)

- The enthalpy of formation of an element in its standard state at 25 $^\circ\text{C}$ is zero

$\Delta H_f^{\circ} Br_2(I) = \Delta H_f^{\circ} H_2 O(I) = 0$

The enthalpy of formation of H⁺ (aq) is also zero

Calculation of H°

$\Delta H^{\circ} = \sum \Delta H_{f}^{\circ} \text{ products} - \sum \Delta H_{f}^{\circ} \text{ reactants}$

- The symbol refers to "the sum of"
- · Elements in their standard states may be omitted, as their enthalpies of formation are zero
- · The coefficients of reactants and products in the balanced equation must be accounted for

Notes on Bond Enthalpy

- · The bond enthalpy is always a positive quantity · Energy is required to break a chemical bond
- When a chemical bond forms, the sign of the enthalpy change is negative
- · For endothermic reactions
 - The bonds are stronger in the reactants than in the products, and/or
 - There are more bonds in the reactants than in the products

-	120.000	arrest of	1022	17122 597	100					
	Tab	le 8.4	Bon	nd Enth	alpies					
				Single	Bond Er	nthalpy	(kJ/mol)			
		н	с	N	0	s	F	CI	Br	1
_	Н	436	414	389	464	339	565	431	368	297
	C		347	293	351	259	485	331	276	218
	N			159	222	-	272	201	243	-
	0				138	-	184	205	201	201
	S					226	285	255	213	
	F						153	255	255	277
	CI							243	218	209
	Br								193	180
	1									151
				Multipl	e Bond I	Enthalpy	(kJ/mol)		
-	C=(612	٨	N=N	41	8	C=C		820
	C=N	4	615	٨	l=0	60	7	C=N		890
	C=()	715	C)=0	49	8	C==0		1075
	C=5		477	S	=0	49	8	N=N		941

Bond Enthalpies and Multiple Bonds · As the order of a bond increases from single to double to triple, the bond enthalpy also increases · C-C single, 347 kJ/mol • C-C double, 612 kJ/mol · C-C triple, 820 kJ/mol · Whenever a bond involves two different atoms, the enthalpy is an approximation, because it must be

- averaged over two different species • H-O-H (g) \rightarrow H (g) + OH (g) H = +499 J
- H-O (g) \rightarrow H (g) + O (g) H = +428 kJ

Bond Enthalpy vs. Enthalpy of Formation

- · When H is calculated, we can use enthalpies of formation or bond enthalpies
 - · Using enthalpy of formation, results are accurate to 0.1 kJ
 - · Using bond enthalpies, results can produce an error of 10 kJ or more
- Use enthalpies of formation to calculate H wherever possible

The First Law of Thermodynamics

- Thermodynamics
 - Deals with all kinds of energy effects in all kinds of processes
 - Two types of energy
 - Heat (q)
 - Work (w)
 - The Law of Conservation of Energy
 - E_{system} = E_{surroundings}
 - The First Law
 - E = q + w
 - The total change in energy is equal to the sum of the heat and work transferred between the system and the surroundings

Conventions

- q and w are positive
 - When the heat or work enters the system from the surroundings
- q and w are negative
 - When the heat or work leaves the system for the surroundings

Heat

- Ordinarily, when a chemical reaction is carried out in the laboratory, energy is evolved as heat
 - $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + H_2O()$ E = -885 kJ
 - The combustion of methane in a Bunsen burner produces nearly 885 kJ of heat per mol
 - The decrease in volume that takes place is a 1% work effect

Work

- In an internal combustion engine, a significant fraction of the energy of combustion is converted to useful work
 - The expansion of the combustion gases produces a volume and a pressure change
 - · The system does work on its surroundings
 - Propels the car forward
 - Overcomes friction
 - Charges battery
 - Like H, E is a state variable
 q and w are not state variables

H and E	
 Constant pressure Coffee-cup calorimeter H = q_p Constant volume In a bomb calorimeter, there is no pressure-volume work done E = q_v 	

Key Concepts

- 1. Relate heat flow to specific heat, m and t
- 2. Calculate q for a reaction from calorimetric data.
- 3. Apply the rules of thermochemistry
- 4. Apply Hess's law to calculate H
- 5. Relate H° to the enthalpies of formation
- 6. Relate E, q and w
- 7. Relate H and E