Ch.8 Thermochemistry 熱化學

8-1: Principles of Heat Flow

- 1. State Properties
- 2. Direction and Sign of Heat Flow
- 3. Magnitude of Heat Flow

8-2: Measurement of Heat Flow ; Calorimetry

- 1. Coffee-Cup Calorimeter
- 2. Bomb Calorimeter
- 8-3: Enthalpy ∆H
- 8-4: Thermochemical Equations

8-5: Enthalpies of formation H_f

- 1. Meaning of ΔH_{f}^{0}
- 2. Calculation of ΔH^0

8-6: Bond Enthalpy

- 8-7: The first law of thermodynamics
 - 1. $\Delta U = q + w$ 2. ΔH Versus ΔU ; $\Delta H = \Delta U + \Delta n_g RT$

§ 8-1 Principles of heat flow

Chemical reaction :

System : reactants and products.

Surroundings : the vessel in which the reaction takes place and the air or other material in thermal contact with the reaction system.

State property (狀態性質):

Any thermodynamic property whose value for the process is independent of the path. It depends only on the state of the system. 一性質與初態和終態有關, 與其過程和途徑無關.

例如: composition, T and P

例: $50.0 \text{ g of } H_2O(l) \text{ at } 50^{\circ}\text{C}, 1 \text{ atm}$

 \downarrow 50.0 g of $H_2O(l)$ at 80°C, 1atm $\Delta X = X_{final} - X_{initial}$

Heat flow (熱流量; q) is not a state property (non-state property); its magnitude

depends on how a process is carried out.

Non-state property of a system:一性質與其過程和途徑有關. 如: 功 (work; w); 熱流量 (heat flow; q)

§ Direction and Sign of Heat Flow :

Heat flow (q) q:"+" when heat flows into the system from the surroundings. 吸熱 q:"-" when heat flows out of the system into the surroundings. 放熱

An endothermic(吸熱) process (q > 0)

 $[6] : H_2O(s) \longrightarrow H_2O(l) \qquad q > 0$

An exothermic(放熱) process (q < 0)

例:
$$CH_4(g) + 2O_2(g) \xrightarrow{a} CO_2(g) + 2H_2O(g)$$
 q < 0
放熱至環境中

§ Magnitude of heat flow:

q: 單位 J, kJ 1 cal = 4.184 J 1 kcal = 4.184 kJ $q = \text{C} \times \Delta T$ ($\Delta T = T_{\text{final}} - T_{\text{initial}}$)

C: heat capacity of the system

$$\downarrow J_K$$

The amount of heat required to raise the temperature of the system 1K.

For a pure substance of mass m

 $q = m \times c \times \Delta T$ c: specific heat capacity 比熱

c: the amount of heat required to raise the temperature of

one gram of a substance one Kelvin. $\frac{J}{g \cdot K}$

 $C = m \times c$

Table 8.1

$$H_2O(\mathbf{l}): c = 4.18 \ \frac{J}{g \cdot K}; \ H_2O(g): c = 1.87 \ \frac{J}{g \cdot K}$$

Ex 8.1. Compare the amount of heat given off by 1.40 mol of liquid water when it cools from 100.0° C to 10.0° C to that given off when 1.40 mol of steam cools from 200° C to 110° C.

Ans:
$$q_1 = m \times c \times \Delta T$$
 c value from Table 8.1.
 $= (18.02 \text{ x } 1.40) \times (4.18) \times (10.0 - 100.0)$
 $= (25.228) \text{ x } (4.18) \text{ x } (-90.0)$
 $= -9491 \text{ J}$
 $= -9.49 \text{ kJ}$
 $q_2 = m \times c \times \Delta T$
 $= (18.02 \text{ x } 1.40) \times (1.87) \times (110 - 200)$
 $= (25.228) \text{ x } (1.87) \text{ x } (-90)$
 $= -4246 \text{ J}$
 $= -4.25 \text{ kJ}$

Steam gives off less heat than water when it cools.

§ 8-2 Measurement of Heat flow; Calorimetry 熱卡計

Calorimeter 卡計:測反應熱之儀器,儀器內含水或其它已知比熱物質,

卡計可隔絕外界空氣對熱量之影響。

$$q_{reaction} = -q_{calorimeter}$$

$$q_{calorimeter} = C_{cal} \times \Delta T$$

$$q_{reaction} = -C_{cal} \times \Delta T$$

$$= -m \times c_{cal} \times \Delta T$$

§ Coffee-cup Calorimeter

Fig 8.2. 實驗室用, polystyrene foam cup 內含水,外加溫度計攪拌棒

$$q_{reaction} = -\mathbf{m} \times \mathbf{c}_{cal} \times \Delta T$$
$$= -\mathbf{m} \times 4.18 \times \Delta T$$

Ex 8.2. Calcium chloride, $CaCl_2$, is added to canned vegetables to maintain the vegetables' firmness. When added to water, it dissolves:

 $CaCl_2(s) \longrightarrow Ca^{2+}(aq) + 2Cl^{-}(aq)$

A calorimeter contains 50.0 g of water at 25.00° C. When 1.00 g of calcium chloride is added to the calorimeter, the temperature rises to 28.51° C.

Assume that all the heat given off by the reaction is transferred to the water.

- (a) Calculate q for the reaction system.
- (b) How much CaCl₂ must be added to raise the temperature of the solution 9.00° C ?

(a)
$$q_{H_2O} = m \times c_{cal} \times \Delta T$$

 $= 50.0 \times 4.18 \times (28.51 - 25.00)$
 $= 734 J$
 $q_{reaction} = -q_{H_2O}$
 $= -734 J$
(b) $q_{reaction} = -m \times c_{cal} \times \Delta T$
 $= -50.0 \times 4.18 \times 9.00$
 $= -1.88 \times 10^3 J$
 $1.00 : -734 = m_{CaCl_2} : -1880$
 $m_{CaCl_2} = 2.56 g$

§ Bomb calorimeter 彈形卡計

Coffee cup calorimeter 不適合含氣體之反應及高溫產物之反應.

 $\downarrow \\ \text{bomb calorimeter} \\ \stackrel{\smile}{\hookrightarrow} \text{heavy-walled metal vessel}$

浸入水中

 $q_{reaction} = -q_{calorineter} = -C_{cal} \times \Delta T$

C_{cal}可由一已知反應熱之反應測得之,如下例:

例: 一反應放熱 93.3 kJ, 而 Bomb calorimeter 升溫由 20.00℃至 30.00℃

$$-93.3 \text{ kJ} = -C_{cal} \times \Delta T$$
$$= -C_{cal} \times (30.00 - 20.00)$$
$$C_{cal} = \frac{93.3}{10.00} = 9.33 \text{ kJ/K}$$

Ex 8.3. Hydrogen chloride is used in etching semiconductors. It can be prepared by reacting hydrogen and chlorine gases.

 $H_2(g) \ + \ Cl_2(g) \ \longrightarrow \ 2 \, HCl(g)$

It is found that when 1.00 g of H_2 is made to react completely with Cl_2 in a bomb calorimeter, the temperature in the bomb (heat capacity = 9.33 kJ/K) rises from 20.00°C to 29.82°C. How much heat is evolved by the reaction?

Ans:

$$q_{reaction} = -C_{cal} \times \Delta T$$

= -9.33 × (29.82 - 20.00)
= -91.6 kJ

§8-3 Enthalpy 焓;H

At constant pressure (P = C), the heat flow for the reaction system is equal to the difference in enthalpy (H) between products and reactants.

1.00g
$$H_2O(l)$$
 (25°C, 1atm) \longrightarrow 1.00g $H_2O(l)$ (26°C, 1 atm)
 $\Delta H = 4.18 \text{ J}$
 $\hookrightarrow = c; 比熱$

§ 8-4 Thermochemical equations :

A chemical equation also shows the **enthalpy relation** between products and reactants.

 $NH_4NO_3(s) \longrightarrow NH_4^+(aq) + NO_3^-(aq)$

1.00g NH_4NO_3 $q_{reaction} = 351 \text{ J}$

 $\Delta H = 351 \text{ J} = 0.351 \text{ kJ}$ for 1.00g NH_4NO_3

for 1 mole NH_4NO_3

$$\Delta H = (0.351) \times (80.05) = +28.1 \text{ kJ}$$

...

$$NH_4NO_3(s) \longrightarrow NH_4^+(aq) + NO_3^-(aq) \qquad \Delta H = +28.1 \text{ kJ}$$

$$H_2(g) + Cl_2(g) \longrightarrow 2HCl(g)$$
 $\Delta H = -185 \text{ kJ}$

Thermochemical equations :

- 1. P = C, ΔH "+" endothermic 吸熱反應 "-" exothermic 放熱反應
- 2. 平衡常數代表 mole 數 1 mole $H_2(g) + 1$ mole $Cl_2(g) \longrightarrow 2$ mole $HCl(g) \Delta H = -185$ kJ 反應熱之値隨平衡係數值改變而變.
- 3. 反應物及生成物狀態需明確標示 (1), (s), (g), (aq).
- 4. Δ*H* 一般未標明下,指 25℃狀況下.

§ Rules of Thermochemistry

1. The magnitude of ΔH is directly proportional to the amount of reactant or product.

$$H_2(g) + Cl_2(g) \longrightarrow 2HCl(g)$$
 $\Delta H = -185 \text{ kJ}$
 $\frac{1}{2}H_2(g) + \frac{1}{2}Cl_2(g) \longrightarrow HCl(g)$ $\Delta H = \frac{1}{2} \times (-185 \text{ kJ}) = -92.5 \text{ kJ}$

Ex 8.4. The Bunsen burners in your labs are fueled by natural gas, which is mostly methane, CH₄. The thermochemical equation for the combustion (burning in oxygen) of methane is

CH₄(g) + 2O₂(g) → CO₂(g) + 2H₂O(l) ΔH = -890.3 kJ
Calculate ΔH when
(a) 5.00 g of CH₄ react with an excess of oxygen.
(b) 2.00 L of O₂ at 49.0°C and 782 mmHg react with an excess of methane.
(c) 2.00 L of CH₄ react with 5.00 L of O₂ in a reaction vessel kept at 25°C and 1.00 atm. Followed the ideal gas behavior.

(a)
$$\Delta H = \frac{5.00}{16.04} \times \frac{-890.3}{1 \text{ mol CH}_4} = -278 \text{ kJ}$$

(b)
$$n_{O_2} = \frac{PV}{RT} = \frac{(7827760) \times 2.00}{0.0821 \times (49 + 273)} = 0.0778 \text{ mol}$$

$$\Delta H = 0.0778 \times \frac{-890.3 \text{ kJ}}{2 \text{ mol } \text{O}_2} = -34.6 \text{ kJ}$$

(c)
$$P = C \text{ and } T = C; V \propto n$$

 $n_{CH_4} : n_{O_2} = 1:2$ \therefore CH_4 is the limiting reagent.
 $n_{CH_4} = \frac{PV}{RT} = \frac{1.00 \times 2.00}{0.0821 \times (25 + 273)} = 0.0817 \text{ mol}$
 $\Delta H = 0.0817 \times \frac{-890.3}{1 \text{ mol } CH_4} = -72.7 \text{ kJ}$

s
$$\longrightarrow l$$
 heat of fusion ΔH_{fus}
 $l \longrightarrow g$ heat of vaporization ΔH_{vap} \Rightarrow Table 8.2

2.
$$\Delta H_{\Xi \boxtimes \boxtimes} = -\Delta H_{\boxtimes \boxtimes \boxtimes}$$

 $H_2 O(s) \longrightarrow H_2 O(l) \qquad \Delta H = +6.00 \text{ kJ}$
 $\Rightarrow H_2 O(l) \longrightarrow H_2 O(s) \qquad \Delta H = -6.00 \text{ kJ}$

Ex 8.5. Given

$$2H_2(g) + O_2(g) \longrightarrow 2H_2O(l) \qquad \Delta H = -571.6 \text{ kJ}$$

Calculate ΔH for the equation

$$H_2O(l) \longrightarrow \frac{1}{2}O_2(g) + H_2(g)$$

Ans:

$$H_{2}(g) + \frac{1}{2}O_{2}(g) \longrightarrow H_{2}O(l) \qquad \Delta H = \frac{-571.6}{2} = -285.8 \ kJ$$
$$H_{2}O(l) \longrightarrow \frac{1}{2}O_{2}(g) + H_{2}(g) \qquad \Delta H = -(-285.8) \ kJ = +285.8 \ kJ$$

3. The value of ΔH for a reaction is **the same** whether it occurs in one step or in a series of step.

反應熱ΔH與反應物及生成物狀態有關,

 $\Delta H = \sum H_{f_{\pm c k m}} - \sum H_{f_{\overline{c} \overline{c} \overline{k} m}}; \, \mathbb{H} \overline{C} \overline{k} \overline{k} \mathbb{R} \mathbb{R} \implies \mathbb{K} \mathbb{K} \mathbb{K} \mathbb{K} \mathbb{K}$

Hess's law: \Rightarrow fundamental basis of thermodynamics as applied to chemical reactions.

- Specific chemical changes are accompanied by a characteristic change in energy.
- I New chemical changes can be devised by combing known chemical changes. This is done algebraically.
- I The change in energy of the combined reaction is the equivalent algebraic combination of the energy changes of the component chemical reaction.

Hess's law 黑斯定律

- 1) 反應熱依化學反應之初態及終態而定,與中間反應過程無關.
- 2) 熱化學反應與代數方程式一般,可以彼此加減.
- Ex 8.6. Carbon monoxide, CO, is a poisonous gas. It can be obtained by burning carbon in a limited amount of oxygen. Given

(1)
$$C(s) + O_2(g) \longrightarrow CO_2(g)$$
 $\Delta H_1 = -393.5 \, kJ$
(2) $2CO(g) + O_2(g) \longrightarrow 2CO_2(g)$ $\Delta H_2 = -566.0 \, kJ$

Calculate ΔH for the reaction

$$C(s) + \frac{1}{2}O_2(g) \longrightarrow CO(g) \qquad \Delta H = ?$$

$$1 \times (1) - \frac{1}{2} \times (2):$$

$$C(s) + O_{2}(g) \longrightarrow CO_{2}(g)$$

$$CO_{2}(g) \longrightarrow CO(g) + \frac{1}{2}O_{2}(g)$$

$$C(s) + \frac{1}{2}O_{2}(g) \longrightarrow CO(g) \quad \Delta H = 1 \times \Delta H_{1} - \frac{1}{2} \times \Delta H_{2}$$

$$= 1 \times (-393.5) - \frac{1}{2} \times (-566.0)$$

$$= -110.5 \text{ kJ}$$

Thermochemistry 重點整理:

- 1. ΔH 與反應物及生成物之量成正比
- 2. $\Delta H_{\rm EDE} = -\Delta H_{\rm HDE}$
- 3. ΔH 與反應過程無關,僅與反應初態及終態有關.

§ 8-5 Enthalpies of Formation:

利用生成焓可以更方便計算反應之ΔΗ.

$$\Delta H^{o} = \sum \Delta H^{o}_{f_{\pm \mathrm{g}\mathrm{k}\mathrm{b}}} - \sum \Delta H^{o}_{f_{\mathrm{g}\mathrm{g}\mathrm{k}\mathrm{b}}}$$

§ Meaning of ΔH_f^{0} :

Standard molar enthalpy of formation 標準莫耳生成焓:

The enthalpy change when one mole of compound is formed at P = 1 atm, $T = 25^{\circ}C$ from the elements.

$$Ag(s)(25^{\circ}C) + \frac{1}{2}Cl_{2}(g)(1 \text{ atm, } 25^{\circ}C) \longrightarrow AgCl(s)(25^{\circ}C) \quad \Delta H = -127.1 \text{ kJ}$$
$$\Delta H_{f}^{\bullet} \quad AgCl(s) = -127.1 \frac{kJ}{mol}$$
$$\frac{1}{2}N_{2}(g)(1 \text{ atm, } 25^{\circ}C) + O_{2}(g) \quad (1 \text{ atm, } 25^{\circ}C) \longrightarrow NO_{2}(g) \quad (1 \text{ atm, } 25^{\circ}C)$$
$$\Delta H = +33.2 \text{ kJ}; \quad \Delta H_{f}^{\bullet} \quad NO_{2}(g) = +33.2 \frac{kJ}{mol}$$

Table 8.3 ΔH_f^{o}

FAULE 8.3	Standard En Aqueous los	thalpies of For	mation at 25	C (M/mol) of C	empounds a	atm;	++ . +3	
Compounds								
Agfir(t)	-100.4	CaChos	-795.8	H2O(2)	-241.8	NH4NO3(x)	- 365.5	
AgClini	-127.1	CaCO ₃ (a)	-1206.9	H20(7)	-285.8	NO(g)	+90.2	
Agito	-61.8.	CaO(a)	-635.1	H2O2471	-187.8	NO160	+33.2	
AgNOyist	-124.4	Car(OH) ₂ (3)	-986.1	HfgS(g)	-20.6	N204(2)	+9.2	
Ag-O(i)	-31.0.	Ca50,(1)	-1434.1	142504(/)	-814.0	NaCl(s)	~411.2	
$Al_2O_3(i)$	-1675.7	CdCl ₂ (0	-391.5	ftg003	-98.8	NaF(3)	-\$73.0	
BaClets)	-858.6	(CdOb)	-258.2	K(Br(s))	-393.8	NaCHH(s)	-425.6	
BaCO ₃ (A)	-1210.8	CasOyto	-1139.7	KCI(i)	-436.7	200(9)	-239.7	
BaO(c)	-553.5	CaOist	-157.3	KCIO ₃ DI	-397.7	Policy(s)	-278.7	
BaSO ₄ (4)	-1473.2	Olg0(3)	-168.6	RCIO409	-432.8	PpCl ₂ (s)	-359;4	
CCL(I)	-135.4	Cu5(t)	-5.5.1	KNO ₃ ei)	-494.6	PbO(s)	-219.0	
CECLAR	-134.5	CasS(0)	- 79.5	MgCluth	-641.3	125O2(1)	-277.4	
CHAIN	-74.B	CuSDate	-771.4	MgCO ₃ (s)	-1095.B	INLAR	-287.0	
Cathion	+226.7	FecOHig00	-823.0	MgO(x)	-601.7	PCI ₄ (g)	-374.9	
CoHala	+ 32.3	FesO ₁₀₀	-824.2	MgrOHDH00	-924.5	SiO ₂ (1)	-910.9	
Calleto	-84.7	Fe ₃ O ₄ (i)	-1118.4	MgSCl ₄ (i)	-1284.9	SitO ₂ (0)	-580.7	
Cillabel	-103.8	HBOgt	-36.4	MeObi	-385.2	SO ₂ (g)	- 296.8	
CH ₁ OHI7	-238.7	HCIUS	-92.3	MmDy(4)	-520.0	SO ₃ (g)	-395.7	
C ₂ H ₂ OHii)	-277.2	HEGH	-271.1	NHAD	-46.1.	Znl ₂ (3)	- 208/0	
COLO	~110.5	HIGO	+26.5	NgH4(7)	+50.6	ZnO(i)	-340.3	
CO2(2)	-393.5	HNO ₂ (<i>t</i>)	-174.1	NH ₄ CI(t)	-314.4	Zn5(s)	-206.0	
Cations					Ani	Anions		
Ag* Gag	+105.6	Hg ²⁺ 049	+171.1	Br"(ag)	-123.6	HPO ₄ ²⁻ (inj)	-1.292.1	
61 ¹⁺ 6m0	-531.0	IC" Grigh	-252.4	COs2 (aq)	-677.1	HSO ₄ (m)	-887.3	
Ba ^m (mg)	-537.6	Mg2-(mg)	-46n.8	(1-(44))	-167.2	1-640	-55.2	
Ca ² ing	~542.8	Mm ²⁺ 040	-220.8	CIO ₂ (ag)	-104.0	MnO ₄ (and	-541.4	
Cd ²⁺ (M)	-75.9	Na*6a0	-240.1	CIO ₄ (ag)	-129.3	NO2 (IIII)	-104.6	
Cu*tag)	+73.7	NH4*6ag)	-132.5	Cr0,2 640	-881.2	NO1-(140	- 205.0	
Cu ²⁺ (aj)	+64.8	NI ²⁺ (ag)	-54.0	Cr2Oy2-(aq)	-1490.3	OH Sagt	-230.0	
Fe2* ungi	-89.1	Pb ²⁺ Gagi	-1.7	FIAD	-332.6	PO ₄ ^{p-} (eq)	-1277.4	
Fe ^{h+} (m)	-48.5	5m2+(ap)	-8.8	10003 Gag0	-692.0	5 ²⁻ (mp)	+33.1	
H+0au)	0.0	Zn2+[ad)	-153.9	H-PO((av)	-1296.3	SO42-(140)	-909.1	

常溫常壓下(1 atm, 25℃),所有穩定狀態元素之莫耳生成焓 =0

$$\Delta H_f^{\mathbf{0}} Br_2(l) = \Delta H_f^{\mathbf{0}} O_2(g) = 0$$

§ Calculation of ΔH° standard enthalpy change.

$$\Delta H^{\mathbf{0}} = \sum \Delta H^{\mathbf{0}}_{f \text{ products}} - \sum \Delta H^{\mathbf{0}}_{f \text{ reac tan ts}}$$

Thermite (鋁熱劑):

$$2Al(s) + Fe_2O_3(s) \longrightarrow 2Fe(s) + Al_2O_3(s)$$

$$\Delta H^{\bullet} = \sum \Delta H^{\bullet}_{f \pm \bar{\alpha} \bar{n} \bar{n}} - \sum \Delta H^{\bullet}_{f \bar{\Sigma} \bar{m} \bar{n}}$$

$$= \left[2 \times \Delta H^{\bullet}_{f} Fe(s) + \Delta H^{\bullet}_{f} Al_2O_3(s) \right] - \left[2 \times \Delta H^{\bullet}_{f} Al(s) + \Delta H^{\bullet}_{f} Fe_2O_3(s) \right]$$

$$= (-1675.7) - (-824.2)$$

$$= -851.5 \text{ kJ}$$

·平衡係數,必需列入計算

$$2Al(s) + 3Cu^{2+}(aq) \longrightarrow 2Al^{3+}(aq) + 3Cu(s)$$

$$\Delta H^{\circ} = \sum \Delta H^{\circ}_{f \pm k \forall} - \sum \Delta H^{\circ}_{f k \forall}$$

$$= 2 \times \Delta H^{\circ}_{f} Al^{3+}(aq) - 3 \times \Delta H^{\circ}_{f} Cu^{2+}(aq)$$

$$= 2 \times (-531.0) - 3 \times (+64.8)$$

$$= -1256.4 \text{ kJ}$$

Ex 8.7. Benzene, C_6H_6 , used in the manufacture of plastics, is a carcinogen affecting the bone marrow. Long-term exposure has been shown to cause leukemia and the blood disorders. The combustion of benzene is given by the following equation:

$$C_6 H_6(l) + \frac{15}{2} O_2(g) \longrightarrow 6 C O_2(g) + 3 H_2 O(l) \Delta H^\circ = -3267.4 \text{ kJ}$$

- (a) Calculate the heat of formation of benzene.
- (b) Calculate ΔH° for the reaction $12CO_2(g) + 6H_2O(l) \rightarrow 2C_6H_6(\mathbf{l}) + 15O_2(g)$
- (c) Calculate ΔH° for the reaction

$$C_6H_6(g) + \frac{15}{2}O_2(g) \longrightarrow 6CO_2(g) + 3H_2O(g)$$

Given that ΔH_{vap} for benzene at 25°C is 33.6 kJ/mol; ΔH_{vap} for water at 25°C is 44.0 kJ/mol.

Ans:

(a)
$$\Delta H^{\circ} = \sum \Delta H_{f \pm k \mp m}^{\circ} - \sum \Delta H_{f k \mp m}^{\circ}$$
$$\Delta H^{\circ} = \left[6 \times \Delta H_{f}^{\circ} CO_{2}(g) + 3 \times \Delta H_{f}^{\circ} H_{2}O(l) \right] - \left[\Delta H_{f}^{\circ} C_{6} H_{6}(l) \right]$$
$$-3267.4 = \left[6 \times (-393.5) + 3 \times (-285.8) \right] - \Delta H_{f}^{\circ} C_{6} H_{6}(l)$$

 $\Delta H_{f}^{0}C_{6}H_{6(l)} = [(-2361) + (-857.4)] + 3267.4$

$$= +49.0 \ kJ/mol$$

(b)
$$\begin{bmatrix} C_6H_6(l) + \frac{15}{2}O_2(g) & \longrightarrow & 6CO_2(g) + 3H_2O(l) \end{bmatrix} \times (-2)$$
$$\Rightarrow \quad 12CO_2(g) + 6H_2O(l) \rightarrow 2C_6H_6(\mathbf{l}) + 15O_2(g)$$

$$\Rightarrow 12CO_2(g) + 6H_2O(l) \rightarrow 2C_6H_6(l) + 15O_2(g)$$
$$\Delta H^{\bullet} = (-3267.4) \times (-2) = +6534.8 \text{ kJ}$$

(c) (1)
$$C_6H_6(l) + \frac{15}{2}O_2(g) \longrightarrow 6CO_2(g) + 3H_2O(l) \quad \Delta H_1^{\bullet} = -3267.4 \text{ kJ}$$

(2) $H_2O(l) \longrightarrow + H_2O(g) \qquad \Delta H_2^{\bullet} = +44.0 \text{ kJ}$
(3) $C_6H_6(l) \longrightarrow C_6H_6(g) \qquad \Delta H_3^{\bullet} = \Delta H_{vap} = 33.6 \text{ kJ}$
 $1 \times (1) + 3 \times (2) - 1 \times (3):$
 $C_6H_6(l) + \frac{15}{2}O_2(g) \longrightarrow 6CO_2(g) + 3H_2O(l)$
 $+ 3H_2O(l) \longrightarrow + 3H_2O(g)$
 $+ C_6H_6(g) \longrightarrow + C_6H_6(l)$
 $C_6H_6(g) + \frac{15}{2}O_2(g) \longrightarrow 6CO_2(g) + 3H_2O(g)$
 $\Delta H^{\bullet} = 1 \times \Delta H_1^{\bullet} + 3 \times \Delta H_2^{\bullet} - 1 \times \Delta H_3^{\bullet}$
 $= (-3267.4) + 3 \times (44.0) - (33.6)$
 $= -3169.0 \text{ kJ}$

Ex 8.8. Sodium carbonate is a white powder used in the manufacture of glass. When hydrochloric acid is added to a solution of sodium carbonate, carbon dioxide gas is formed. The equation for the reaction is

$$2H^+(aq) + CO_3^{2-}(aq) \longrightarrow CO_2(g) + H_2O(l)$$

- (a) Calculate ΔH° for the thermochemical equation.
- (b) Calculate ΔH° when 25.0 mL of 0.186 M HCl is added to sodium carbonate.

$$= -2.2 \text{ kJ}$$

(b)

$$n_{HCl} = n_{H^+} = V \times M = \frac{25.00}{1000} \times 0.186 = 0.00465 \text{ mol}$$
$$\Delta H^{\circ} = 0.00465 \text{ mol } \text{H}^+ \times \frac{-2.2 \text{kJ}}{2 \text{ mol } \text{H}^+} = -5.1 \times 10^{-3} \text{ kJ}$$

§8-6 Bond enthalpy 鍵結焓:均為"+"值

When one mole of bonds is broken in the gases state.

 $H_2(g) \longrightarrow 2H(g)$ $\Delta H^{\bullet} = 436 \text{ kJ}$ H-H bond enthalpy = 436 kJ $Cl_2(g) \longrightarrow 2Cl(g)$ $\Delta H^{\bullet} = 243 \text{ kJ}$ Cl-Cl bond enthalpy = 243 kJ

§ 8-7 The First law of Thermodynamics 熱力學第一定律

Thermochemistry is a branch of thermodynamics.

Thermodynamics distinguishes between two types of energy one of these is heat (q); the other is work (w). Work includes all forms of energy except heat.

The law of conservation of energy:能量不滅定律

$$\Delta U_{system} = -\Delta U_{surroundings}$$

The first law of Thermodynamics :

In any process, the total change in energy of a system, ΔU is equal to the sum of the heat, q, and the work , w , transfer between the system and the surroundings.

For an isolated system, the total energy of the system remains constant.

$$\Delta U = \mathbf{q} + \mathbf{w}$$

Isolated system 獨立系統: A system does not allow matter or energy come in or get out of the system.

Ex 8-9 : Calculate ΔU of a gas for a process in which the gas.

a) absorbs 20 J of heat and does 12 J of work by expanding.

b) evolves 30 J of heat and has 52 J work done on it as it contacts.

Ans : $\Delta U = q + w$

b)

$$q = +20 J \qquad w = -12J$$

$$\Delta U = +20 + (-12) = +8 J$$

$$q = -30 J \qquad w = +52 J$$

$$\Delta U = -30 + 52 = +22 \text{ J}$$

$$CH_4(g) + 2O_2(g) \longrightarrow CO_2(g) + 2H_2O(l)$$

$$\Delta U = -885 \text{ kJ}$$

	ΔU	q	W
本生燈	-885 kJ	-890 kJ	+5 kJ
汽車引擎	-885 kJ	-665 kJ	-220 kJ
燃料電池*	-885 kJ	-67 kJ	-818 kJ

* 以功率而言, 此項最佳.

 ΔH versus ΔU

Coffee-cup calorimeter P = C $\Delta H = q_p$

Bomb calorimeter V = C w = 0 $\Delta U = q_V$

$$H = U + PV 1 mole 25^{\circ}C$$

PV = 1 × 0.0821 × (25+273)
= 24.5 L-atm × 0.1013 kJ
= 2.48 kJ

1 L-atm = 0.1013 kJ

 $\Delta H = \Delta U + \Delta P V$

$$= \Delta U + [(PV)_{\overline{k}} - (PV)_{\overline{k}}]$$

$$\Delta H = \Delta U + \Delta n_g RT \qquad \Delta n_g : 氣體物質莫耳數改變量$$

$$25^{\circ} C 下, CH_4(g) + 2O_2(g) \longrightarrow CO_2(g) + 2H_2O(l) \qquad \Delta U = -885 \text{ kJ}$$

$$\begin{split} \Delta n_g &= 1 - (1+2) = -2 \text{ mol} \\ \mathbf{R} : 8.314 \ J_{mol.k} & \mathbf{T} : 298 \text{ K} \\ \Delta H &= \Delta U + \Delta n_g RT \\ &= (-885 \text{ kJ}) + (-2) \times 8.314 \times 298 \\ &= (-885 \text{ kJ}) + (-5.0 \times 10^3 \text{ J}) \\ &= (-885 \text{ kJ}) + (-5.0 \text{ kJ}) \\ &= -890 \text{ kJ} \\ \Delta H &= -890 \text{ kJ}; \quad \Delta U = -885 \text{ kJ} \\ &\texttt{T} \& \nabla \mathbf{E} \ \ \ \mathbf{E}, \ \ \mathbf{E} \ \mathbf{w} \ \ \mathbf{E} \ \mathbf{T} = 1\%, \ \mathbf{T} \ \mathbf$$

Ex 8.10. Calculate ΔH and ΔU at 25°C for the reaction takes place when an oxyacetylene torch is used.

$$C_2H_2(g) + \frac{5}{2}O_2(g) \longrightarrow 2CO_2(g) + H_2O(g)$$

$$\Delta H = \sum \Delta H_{f \pm g \pm g}^{0} - \sum \Delta H_{f \otimes g \pm g}^{0}$$

$$= \left[2 \times \Delta H_{f}^{0} CO_{2}(g) + \Delta H_{f}^{0} H_{2} O(g) \right] - \left[\Delta H_{f}^{0} C_{2} H_{2}(g) \right]$$

$$= \left[2 \times (-393.5) + (-241.8) \right] - (226.7)$$

$$= -1255.5 \text{ kJ}$$

$$\Delta n_{g} = (2 + 1) - (1 + \frac{5}{2}) = -0.5 \text{ mol}$$

$$\Delta H = \Delta U + \Delta n_{g} RT$$

$$\Delta U = \Delta H - \Delta n_g RT$$

= -1255.5 - (-0.5) × (8.314) × (25 + 273)
= -1255.5 kJ + 1.2 kJ
= -1254.3 kJ