Ch． 8 Thermochemistry 熱化學

8－1：Principles of Heat Flow
1．State Properties
2．Direction and Sign of Heat Flow
3．Magnitude of Heat Flow
8－2：Measurement of Heat Flow ；Calorimetry
1．Coffee－Cup Calorimeter
2．Bomb Calorimeter
8－3：Enthalpy ΔH
8－4：Thermochemical Equations

8－5：Enthalpies of formation H_{f}
1．Meaning of $\Delta \mathrm{H}_{\mathrm{f}}^{0}$
2．Calculation of $\Delta \mathrm{H}^{0}$

8－6：Bond Enthalpy
8－7：The first law of thermodynamics
1．$\Delta \mathrm{U}=\mathrm{q}+\mathrm{w}$
2．$\Delta \mathrm{H}$ Versus $\Delta \mathrm{U} ; \Delta H=\Delta U+\Delta n_{g} R T$

§ 8－1 Principles of heat flow

Chemical reaction ：

System ：reactants and products．
Surroundings ：the vessel in which the reaction takes place and the air or other material in thermal contact with the reaction system．

State property（狀態性質）：
Any thermodynamic property whose value for the process is independent of the path．It depends only on the state of the system．一性質與初態和終態有關，與其過程和途徑無關。

例如：composition， T and P

例：$\quad 50.0 \mathrm{~g}$ of $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ at $50^{\circ} \mathrm{C}$ ， 1 atm
\Downarrow
50.0 g of $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ at $80^{\circ} \mathrm{C}, 1 \mathrm{~atm}$

$$
\Delta X=X_{\text {final }}-X_{\text {initial }}
$$

Heat flow（熱流量；q）is not a state property（non－state property）；its magnitude depends on how a process is carried out．

Non－state property of a system ：一性質與其過程和途徑有關。如：功（work；w）；熱流量（heat flow；q）

§ Direction and Sign of Heat Flow ：

Heat flow（q）
q：＂＋＂when heat flows into the system from the surroundings．吸熱 $\mathrm{q}: "$－＂when heat flows out of the system into the surroundings．放熱

An endothermic（吸熱）process $(q>0)$

$$
\text { 例 : } \mathrm{H}_{2} \mathrm{O}(s) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \mathrm{q}>0
$$

An exothermic（放熱）process $(\mathrm{q}<0)$
例： $\mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(\mathrm{~g}) \xrightarrow[\text { 燃焼 }]{\stackrel{\Delta}{4}} \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \quad \mathrm{q}<0$

放熱至環境中

§ Magnitude of heat flow：

q ：單位 J，kJ

$$
\begin{array}{lc}
1 \mathrm{cal}=4.184 \mathrm{~J} & 1 \mathrm{kcal}=4.184 \mathrm{~kJ} \\
q=\mathrm{C} \times \Delta T & \left(\Delta T=T_{\text {frial }}-T_{\text {intitala }}\right)
\end{array}
$$

C ：heat capacity of the system

$$
\Downarrow J / K
$$

The amount of heat required to raise the temperature of the system 1 K ．

For a pure substance of mass m

$$
q=\mathrm{m} \times \mathrm{c} \times \Delta T \quad \mathrm{c}: \text { specific heat capacity 比熱 }
$$

c ：the amount of heat required to raise the temperature of
one gram of a substance one Kelvin． $\mathrm{J} / \mathrm{g} \cdot \mathrm{K}$

$$
C=\mathrm{m} \times \mathrm{c}
$$

Table 8.1

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{l}): \mathrm{c}=4.18 \mathrm{~J} / \mathrm{g} \cdot \mathrm{~K} ; \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}): \mathrm{c}=1.87 \mathrm{~J} / \mathrm{g} \cdot \mathrm{~K}
$$

Ex 8．1．Compare the amount of heat given off by 1.40 mol of liquid water when it cools from $100.0^{\circ} \mathrm{C}$ to $10.0^{\circ} \mathrm{C}$ to that given off when 1.40 mol of steam cools from $200^{\circ} \mathrm{C}$ to $110^{\circ} \mathrm{C}$ ．

$$
\text { Ans: } \quad \begin{aligned}
\mathrm{q}_{1} & =\mathrm{m} \times \mathrm{c} \times \Delta T \\
& =(18.02 \times 1.40) \times(4.18) \times(10.0-100.0) \\
& =(25.228) \times(4.18) \times(-90.0) \\
& =-9491 \mathrm{~J} \\
& =-9.49 \mathrm{~kJ} \\
\mathrm{q}_{2} & =\mathrm{m} \times \mathrm{c} \times \Delta T \\
& =(18.02 \times 1.40) \times(1.87) \times(110-200) \\
& =(25.228) \times(1.87) \times(-90) \\
& =-4246 \mathrm{~J} \\
& =-4.25 \mathrm{~kJ}
\end{aligned}
$$

Steam gives off less heat than water when it cools．

§ 8－2 Measurement of Heat flow；Calorimetry 熱卡計

Calorimeter 卡計：測反應熱之儀器，儀器內含水或其它已知比熱物質，
卡計可隔絕外界空氣對熱量之影響。

$$
\begin{aligned}
q_{\text {reaction }} & =-\mathrm{q}_{\text {calorimeter }} \\
q_{\text {calorimeter }} & =\mathrm{C}_{\text {cal }} \times \Delta T \\
q_{\text {reaction }} & =-\mathrm{C}_{\text {cal }} \times \Delta T \\
& =-\mathrm{m} \times \mathrm{c}_{\text {cal }} \times \Delta T
\end{aligned}
$$

§ Coffee－cup Calorimeter

Fig 8．2．實驗室用，polystyrene foam cup 內含水，外加溫度計攪拌棒

$$
\begin{aligned}
q_{\text {reaction }} & =-\mathrm{m} \times \mathrm{c}_{\text {cal }} \times \Delta T \\
& =-\mathrm{m} \times 4.18 \times \Delta T
\end{aligned}
$$

Ex 8．2．Calcium chloride， CaCl_{2} ，is added to canned vegetables to maintain the vegetables＇firmness．When added to water，it dissolves：
$\mathrm{CaCl}_{2}(\mathrm{~s}) \longrightarrow \mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq})$
A calorimeter contains 50.0 g of water at $25.00^{\circ} \mathrm{C}$ ．When 1.00 g of calcium chloride is added to the calorimeter，the temperature rises to $28.51^{\circ} \mathrm{C}$ ．
Assume that all the heat given off by the reaction is transferred to the water．
（a）Calculate q for the reaction system．
（b）How much CaCl_{2} must be added to raise the temperature of the solution $9.00^{\circ} \mathrm{C}$ ？

Ans：
（a）$q_{H_{2} \mathrm{O}}=\mathrm{m} \times \mathrm{c}_{c a l} \times \Delta T$

$$
=50.0 \times 4.18 \times(28.51-25.00)
$$

$$
=734 \mathrm{~J}
$$

$$
q_{\text {reaction }}=-q_{\mathrm{H}_{2} \mathrm{O}}
$$

$$
=-734 \mathrm{~J}
$$

（b）$q_{\text {reaction }}=-\mathrm{m} \times \mathrm{c}_{\text {cal }} \times \Delta T$

$$
=-50.0 \times 4.18 \times 9.00
$$

$$
=-1.88 \times 10^{3} \mathrm{~J}
$$

$$
\begin{aligned}
1.00:-734 & =\mathrm{m}_{\mathrm{CaCl}_{2}}:-1880 \\
\mathrm{~m}_{\mathrm{CaCl}_{2}} & =2.56 \mathrm{~g}
\end{aligned}
$$

§ Bomb calorimeter 彈形卡計

Coffee cup calorimeter 不適合含氣體之反應及高溫產物之反應。
\Downarrow
bomb calorimeter
\longrightarrow heavy－walled metal vessel
浸入水中

$$
q_{\text {reaction }}=-q_{\text {calorineter }}=-C_{\text {cal }} \times \Delta \mathrm{T}
$$

$C_{c a l}$ 可由一已知反應熱之反應測得之，如下例：

例：一反應放熱 93.3 kJ ，而 Bomb calorimeter 升溫由 $20.00^{\circ} \mathrm{C}$ 至 $30.00^{\circ} \mathrm{C}$

$$
\begin{aligned}
-93.3 \mathrm{~kJ} & =-C_{c a l} \times \Delta \mathrm{T} \\
& =-C_{c a l} \times(30.00-20.00) \\
C_{c a l} & =\frac{93.3}{10.00}=9.33 \mathrm{~kJ} / \mathrm{K}
\end{aligned}
$$

Ex 8．3．Hydrogen chloride is used in etching semiconductors．It can be prepared by reacting hydrogen and chlorine gases．

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{HCl}(\mathrm{~g})
$$

It is found that when 1.00 g of H_{2} is made to react completely with Cl_{2} in a bomb calorimeter，the temperature in the bomb（heat capacity $=9.33 \mathrm{~kJ} / \mathrm{K}$ ） rises from $20.00^{\circ} \mathrm{C}$ to $29.82^{\circ} \mathrm{C}$ ．How much heat is evolved by the reaction？
Ans：

$$
\begin{aligned}
q_{\text {reaction }} & =-\mathrm{C}_{\text {cal }} \times \Delta \mathrm{T} \\
& =-9.33 \times(29.82-20.00) \\
& =-91.6 \mathrm{~kJ}
\end{aligned}
$$

§ 8－3 Enthalpy 烚；H

At constant pressure $(\mathrm{P}=\mathrm{C})$ ，the heat flow for the reaction system is equal to the difference in enthalpy (H) between products and reactants．

$$
\mathrm{P}=\mathrm{C} ; \quad q_{\text {reaction }}=\Delta H=\sum H_{f_{\text {生成物 }}}-\sum H_{f_{\text {反疰物 }}}
$$

例： $\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

$$
\Delta H<0 \text { 放熱反應 }
$$

例： $\mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
$1.00 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}(\mathrm{l})\left(25^{\circ} \mathrm{C}, 1 \mathrm{~atm}\right) \longrightarrow 1.00 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}(\mathrm{l})\left(26^{\circ} \mathrm{C}, 1 \mathrm{~atm}\right)$

$$
\Delta H=4.18 \mathrm{~J}
$$

$\iota_{\rightarrow=c}$; 比熱

§ 8-4 Thermochemical equations :

A chemical equation also shows the enthalpy relation between products and reactants.

$$
\mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{~s}) \longrightarrow \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{NO}_{3}^{-}(\mathrm{aq})
$$

$1.00 \mathrm{~g} \quad \mathrm{NH}_{4} \mathrm{NO}_{3} \quad q_{\text {reaction }}=351 \mathrm{~J}$

$$
\Delta H=351 \mathrm{~J}=0.351 \mathrm{~kJ} \text { for } 1.00 \mathrm{~g} \quad \mathrm{NH}_{4} \mathrm{NO}_{3}
$$

for 1 mole $\mathrm{NH}_{4} \mathrm{NO}_{3}$

$$
\Delta H=(0.351) \times(80.05)=+28.1 \mathrm{~kJ}
$$

$$
\therefore
$$

$$
\begin{gathered}
\mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{~s}) \longrightarrow \mathrm{NH}_{4}^{+}(a q)+\mathrm{NO}_{3}^{-}(a q) \\
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{HCl}(\mathrm{~g})
\end{gathered} \Delta \mathrm{H}=+28.1 \mathrm{~kJ}
$$

Thermochemical equations ：
1． $\mathrm{P}=\mathrm{C}, ~ \Delta H \quad "+$＂endothermic 吸熱反應 ＂－＂exothermic 放熱反應

2．平衡常數代表 mole 數
1 mole $H_{2}(g)+1$ mole $\mathrm{Cl}_{2}(g) \longrightarrow 2$ mole $\mathrm{HCl}(\mathrm{g}) \quad \Delta H=-185 \mathrm{~kJ}$反應熱之値隨丑衡係數値改變而變。

3．反應物及生成物狀態需明確標示（I ），（s），（g），（aq）．
4．ΔH 一般未標明下，指 $25^{\circ} \mathrm{C}$ 狀況下。

§ Rules of Thermochemistry

1．The magnitude of ΔH is directly proportional to the amount of reactant or product．

$$
\begin{array}{ll}
\mathrm{H}_{2}(g)+\mathrm{Cl}_{2}(g) \longrightarrow 2 \mathrm{HCl}(\mathrm{~g}) & \Delta \mathrm{H}=-185 \mathrm{~kJ} \\
\frac{1}{2} \mathrm{H}_{2}(g)+\frac{1}{2} \mathrm{Cl}_{2}(g) \longrightarrow \mathrm{HCl}(g) & \Delta \mathrm{H}=\frac{1}{2} \times(-185 \mathrm{~kJ})=-92.5 \mathrm{~kJ}
\end{array}
$$

Ex 8．4．The Bunsen burners in your labs are fueled by natural gas，which is mostly methane， CH_{4} ．The thermochemical equation for the combustion（burning in oxygen）of methane is

$$
\mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \quad \Delta H=-890.3 \mathrm{~kJ}
$$

Calculate ΔH when
（a） 5.00 g of CH_{4} react with an excess of oxygen．
（b） $2.00 \mathrm{~L}^{\text {of }} \mathrm{O}_{2}$ at $49.0^{\circ} \mathrm{C}$ and 782 mmHg react with an excess of methane．
（c） $2.00 \mathrm{~L} \mathrm{of}_{\mathrm{CH}}^{4}$ react with 5.00 L of O_{2} in a reaction vessel kept at $25^{\circ} \mathrm{C}$ and 1.00 atm ．Followed the ideal gas behavior．
Ans：
（a）$\Delta H=\frac{5.00}{16.04} \times \frac{-890.3}{1 \mathrm{~mol} \mathrm{CH}_{4}}=-278 \mathrm{~kJ}$
（b） $\mathrm{n}_{\mathrm{O}_{2}}=\frac{P V}{R T}=\frac{(782 / 760) \times 2.00}{0.0821 \times(49+273)}=0.0778 \mathrm{~mol}$

$$
\Delta H=0.0778 \times \frac{-890.3 \mathrm{~kJ}}{2 \mathrm{~mol} \mathrm{O}_{2}}=-34.6 \mathrm{~kJ}
$$

（c） $\mathrm{P}=\mathrm{C}$ and $\mathrm{T}=\mathrm{C} ; \mathrm{V} \infty \mathrm{n}$
$\mathrm{n}_{\mathrm{CH}_{4}}: \mathrm{n}_{\mathrm{O}_{2}}=1: 2 \quad \therefore \mathrm{CH}_{4}$ is the limiting reagent．
$\mathrm{n}_{C H_{4}}=\frac{P V}{R T}=\frac{1.00 \times 2.00}{0.0821 \times(25+273)}=0.0817 \mathrm{~mol}$
$\Delta H=0.0817 \times \frac{-890.3}{1 \mathrm{~mol} \mathrm{CH}_{4}}=-72.7 \mathrm{~kJ}$
$\mathrm{s} \longrightarrow l$ heat of fusion $\Delta H_{\text {fus }}$
$l \longrightarrow \mathrm{~g} \quad$ heat of vaporization $\Delta H_{v a p} \quad \Rightarrow$ Table 8.2

2．$\Delta H_{\text {正反應 }}=-\Delta H_{\text {迸反䧹 }}$

$$
\begin{aligned}
\mathrm{H}_{2} \mathrm{O}(s) \longrightarrow \mathrm{H}_{2} \mathrm{O}(l) & \Delta H=+6.00 \mathrm{~kJ} \\
\Rightarrow \mathrm{H}_{2} \mathrm{O}(l) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{~s}) & \Delta H=-6.00 \mathrm{~kJ}
\end{aligned}
$$

Ex 8．5．Given

$$
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta \mathrm{H}=-571.6 \mathrm{~kJ}
$$

Calculate ΔH for the equation

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow \frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})
$$

Ans：

$$
\begin{array}{ll}
\mathrm{H}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & \Delta H=\frac{-571.6}{2}=-285.8 \mathrm{~kJ} \\
\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow \frac{1}{2} \mathrm{O}_{2}(g)+\mathrm{H}_{2}(g) & \Delta H=-(-285.8) \mathrm{kJ}=+285.8 \mathrm{~kJ}
\end{array}
$$

3．The value of ΔH for a reaction is the same whether it occurs in one step or in a series of step．

反應熱 ΔH 與反應物及生成物狀態有關，

Hess＇s law：\Rightarrow fundamental basis of thermodynamics as applied to chemical reactions．
I Specific chemical changes are accompanied by a characteristic change in energy．
I New chemical changes can be devised by combing known chemical changes．This is done algebraically．
I The change in energy of the combined reaction is the equivalent algebraic combination of the energy changes of the component chemical reaction．

Hess＇s law 黑斯定律

1）反應熱依化學反應之初態及終態而定，與中間反應過程無關．
2）熱化學反應與代數方程式一般，可以彼此加減．
Ex 8．6．Carbon monoxide，CO，is a poisonous gas．It can be obtained by burning carbon in a limited amount of oxygen．Given
（1） $\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})$
$\Delta H_{1}=-393.5 \mathrm{~kJ}$
（2） $2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{CO}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}_{2}=-566.0 \mathrm{~kJ}$

Calculate ΔH for the reaction

$$
C(s)+\frac{1}{2} O_{2}(g) \longrightarrow C O(g) \quad \Delta H=?
$$

Ans：

$$
\begin{aligned}
& 1 \times(1)-\frac{1}{2} \times(2): \\
& \mathrm{C}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g}) \\
& \mathrm{CO}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \\
& \begin{aligned}
& C(s)+\frac{1}{2} O_{2}(g) \longrightarrow C O(g) \\
& \Delta H=1 \times \Delta H_{1}-\frac{1}{2} \times \Delta H_{2} \\
&=1 \times(-393.5)-\frac{1}{2} \times \\
&=-110.5 \mathrm{~kJ}
\end{aligned}
\end{aligned}
$$

Thermochemistry 重點整理：
1．ΔH 與反應物及生成物之量成正比
2．$\Delta H_{\text {正反廘 }}=-\Delta H_{\text {迷矿 }}$
3．ΔH 與反應過程無關，僅與反應初態及終態有關．

§ 8－5 Enthalpies of Formation：

利用生成焓可以更方便計算反應之 ΔH ．

$$
\Delta H^{\mathrm{c}}=\sum \Delta H_{f_{\text {生成物 }}^{\mathrm{c}}}-\sum \Delta H_{f_{\text {反溇物物 }}^{\mathrm{c}}}
$$

§ Meaning of $\Delta H_{f}{ }^{c}$ ：

Standard molar enthalpy of formation 標準莫耳生成焓：
The enthalpy change when one mole of compound is formed at $\mathrm{P}=1 \mathrm{~atm}, \mathrm{~T}=$ $25^{\circ} \mathrm{C}$ from the elements．
$A g(s)\left(25^{\circ} \mathrm{C}\right)+\frac{1}{2} C l_{2}(g)\left(1 \mathrm{~atm}, 25^{\circ} \mathrm{C}\right) \longrightarrow \mathrm{AgCl}(s)\left(25^{\circ} \mathrm{C}\right) \quad \Delta H=-127.1 \mathrm{~kJ}$

$$
\Delta H_{f}^{c} \quad \mathrm{AgCl}(\mathrm{~s})=-127.1 \mathrm{~kJ} / \mathrm{mol}
$$

$\frac{1}{2} \mathrm{~N}_{2}(\mathrm{~g})\left(1 \mathrm{~atm}, 25^{\circ} \mathrm{C}\right)+\mathrm{O}_{2}(\mathrm{~g})\left(1 \mathrm{~atm}, 25^{\circ} \mathrm{C}\right) \longrightarrow \mathrm{NO}_{2}(\mathrm{~g})\left(1 \mathrm{~atm}, 25^{\circ} \mathrm{C}\right)$

$$
\Delta H=+33.2 \mathrm{~kJ} ; \quad \Delta H_{f}^{\mathrm{c}} \quad \mathrm{NO}_{2}(\mathrm{~g})=+33.2 \mathrm{~kJ} / \mathrm{mol}
$$

Table $8.3 \Delta H_{f}^{c}$

TAEIE 8.3 －Stantard Enthalpies of Formation at 25 C （h）／mol）of Cempounds at 1 atm ， Aquecost loms at 1 M fort							
		Compounds					
Xefiti）	－100．4	CiClets	－795．8	$\mathrm{H}_{2} \mathrm{OH} 0$	-2418	$\mathrm{NH}_{4} \mathrm{NO}_{4}(0)$	
AgClos	－127．1		-1206.9	$\mathrm{H}_{2} \mathrm{O} / \mathrm{ll}$	－2358	NOK ${ }^{\text {N }}$	＋502
athto	－61．	Giotr	－65s． 1	$\mathrm{H}_{2} \mathrm{O}, \mathrm{Hal}^{\text {a }}$	-1878	$\mathrm{NO}_{3}\left(\frac{1}{5}\right.$	＋33．2
AgNosist	－124．4	Cambilime	－ask 1	$\mathrm{H}_{5} \mathrm{~S}(4)$	-20.6	$\mathrm{N}_{2} \mathrm{O}_{4} 40$	＊9．2
$\mathrm{Ag}_{2} \mathrm{O}(\mathrm{O}$	－350．	$\mathrm{CaSO}_{40} 4$	－1434	Mstoill	－8140	Nactiol	－411．2
$A_{1} O_{1}(0)$	-1675.7	CaCl_{3}（01	－3918	Arom	－90．8	$\mathrm{NaF}(\mathrm{C})$	－573．6
Bacher	$\rightarrow 50.6$	Ciop）	－25＊2	Kleto	－3998	NaCH／ST	－425．6
$\mathrm{BaCO}_{3} \mathrm{HaF}^{\text {a }}$	－1230． 5	Cento	－11797	Vclot	－46\％	Niob）	－390\％
BaOs）	－ 539.5	Csotor	-1573	NCOH_{3}	－392．7		－278．7
Haso，en	－1873．2	Cumors	－1686	Netojet	－4328	PCCla ${ }^{\text {a }}$	－359．4
$\left.\mathrm{CO}_{4}, \mathrm{~A}\right)$	－135．4	Cuv_{6}	－581	(0.0	－494．6	140,	-2199
cichal）	-134.5	Cu，Sin	-795	MgCest	-6117	molies	$-k v \geqslant+$
$\mathrm{CH}_{4}(\mathrm{~d})$	－7．8．8	Casce， 69	－771．	$\mathrm{Mg} C 0-\mathrm{Na}$	-1005.15	KClusi	-287.0
	＋286．7	Feolitiol	－ 2330	$\mathrm{MgO}(\mathrm{t})$	－601．7	HCSMO	－ 774.9
Cahes	＋\％2．3	FegOem	－824？	Mgictost	－924s	SiO20）	－910．9
$\mathrm{CaH}_{2} \mathrm{Cl}^{\text {a }}$	－84\％	Fige， 6 t	－1158．4	Merctitit	－12344	$5 \mathrm{SHO}_{2}(10)$	－5xa．？
Cillues	－192．8	Haiss	－364	MEnOter	－6452	$5 \mathrm{CH},(8)$	-206.8
CHIOHH?	－2387	нсыs	－023	Manceld	-5200	50,40	－355．7
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OHI}$	-277.2	Hixn	-221.1	Nat， 0^{2}	－46．1		－3xa
$\cot g$	－ 110.5		$+26.5$	$\mathrm{N}_{3} \mathrm{H}_{4} \mathrm{in}$	$+50.6$	zaCon	-348.3
cosion	－3935	HNO，${ }^{\text {H }}$	-1741	Nalucion	－314．4	$\mathrm{Zn54} \mathrm{\%}$	-200.61
	Cations				Anions		
Astray	$+105.6$	$\mathrm{Hf}_{8}{ }^{3}+(\mathrm{aq})$	＋1714	Sr［a］	－121．6		－1202．1
A ${ }^{1+}$（ 6 （1）	－5310	Krapa	－2524	COS^{2} taph	－62．1	$\mathrm{HSO}_{2} \text { (}$	－8873
$\mathrm{Fan}^{7} \boldsymbol{y} \text { (m) }$	-537.6	$M g^{2}-(\sqrt{2})$	－466i8	$a^{-}(+4)$	-167.2	$1^{-} 6+9$	－5s．2
$\mathrm{Ca}^{2}+\infty$	－5428	$\mathrm{Ken}^{2}-\tan$	-2203	$\mathrm{aO}_{1} \mathrm{log} p$	-1046	$\mathrm{MrO}_{5}-6 \mathrm{Fl}$	-541.4
$C y^{2}+141$	－759	$\mathrm{Na}^{\prime}(6 \sqrt{2})$	-240.1	$\mathrm{aO}, \mathrm{tai})$	-129.3	$\mathrm{NO}_{2}(-4)$	-104.6
$\mathrm{Cs}^{*} 644$	＋71．7	$\mathrm{NH}_{4}{ }^{\text {chep }}$	-1325	$\mathrm{CO}_{4}^{2} \text { (20) }$	－881．2	No，${ }^{-1 / 4}$	－205， 3
$\mathrm{Cu}^{2}(\mathrm{al})$	＋648		－540	$\mathrm{Cr}_{2} \mathrm{O}_{2}^{2}$（ay）	－14903．3	OH＇sipl	-2300
Feet ${ }^{\text {cay }}$	－80．1	$\mathrm{pr}^{\mathbf{2}} \mathrm{Clap}$	-1.7	${ }^{\text {F F app }}$	－312．	MO^{3}（（a）	-1277.4
第何）	-485	$\sin ^{2} t(a)$	-8.8	$1+\infty 0^{-} \text {- ayp }$	-01020		133.1
H^{\prime}	0.0	$\mathrm{zn}^{2+}(104)$	－1539		-12963	$50 y^{2-140}$	-909.1

常溫常壓下 $\left(1 \mathrm{~atm}, 25^{\circ} \mathrm{C}\right)$ ，所有穩定狀態元素之莫耳生成烚 $=0$

$$
\Delta H_{f}^{\mathrm{c}} B r_{2}(l)=\Delta H_{f}^{\mathrm{c}} O_{2}(g)=0
$$

§ Calculation of ΔH^{c} standard enthalpy change．

$$
\Delta H^{\mathrm{c}}=\sum \Delta H_{f_{p \text { products }}}^{\mathrm{c}}-\sum \Delta H_{f_{\text {reac can s }}}^{\mathrm{c}}
$$

Thermite（鋁熱劑）：

$$
2 \mathrm{Al}(s)+\mathrm{Fe}_{2} \mathrm{O}_{3}(s) \longrightarrow 2 \mathrm{Fe}(s)+\mathrm{Al}_{2} \mathrm{O}_{3}(s)
$$

$$
\begin{aligned}
& \Delta H^{\mathrm{c}}=\sum \Delta H_{f_{\text {生成物 }}^{\mathrm{c}}}^{\mathrm{c}}-\sum \Delta H_{f_{\text {反濐物 }}^{\mathrm{c}}}^{\mathrm{c}} \\
& =\left[2 \times \Delta H_{f}^{\circ} \mathrm{Fe}(s)+\Delta H_{f}^{\mathrm{o}} A l_{2} O_{3}(s)\right]-\left\lfloor 2 \times \Delta H_{f}^{\mathrm{c}} A l(s)+\Delta H_{f}^{\mathrm{c}} \mathrm{Fe}_{2} O_{3}(s)\right] \\
& =(-1675.7)-(-824.2) \\
& =-851.5 \mathrm{~kJ}
\end{aligned}
$$

－平衡係數，必需列入計算

$$
\begin{aligned}
& 2 A l(s)+3 \mathrm{Cu}^{2+}(a q) \longrightarrow 2 A l^{3+}(a q)+3 \mathrm{Cu}(s) \\
& \qquad \begin{aligned}
\Delta H^{\mathrm{c}} & =\sum \Delta H_{f_{\text {生成物 }}^{\mathrm{c}}}-\sum \Delta H_{f \text { 反栕物 }}^{\mathrm{c}} \\
& =2 \times \Delta H_{f}^{\mathrm{c}} A l^{3+}(a q)-3 \times \Delta H_{f}^{\mathrm{c}} \mathrm{Cu}^{2+}(a q) \\
& =2 \times(-531.0)-3 \times(+64.8) \\
& =-1256.4 \mathrm{~kJ}
\end{aligned}
\end{aligned}
$$

Ex 8．7．Benzene， $\mathrm{C}_{6} \mathrm{H}_{6}$ ，used in the manufacture of plastics，is a carcinogen affecting the bone marrow．Long－term exposure has been shown to cause leukemia and the blood disorders．The combustion of benzene is given by the following equation：

$$
C_{6} H_{6}(l)+\frac{15}{2} \mathrm{O}_{2}(g) \longrightarrow 6 \mathrm{CO}_{2}(g)+3 \mathrm{H}_{2} O(l) \quad \Delta H^{\mathrm{c}}=-3267.4 \mathrm{~kJ}
$$

（a）Calculate the heat of formation of benzene．
（b）Calculate ΔH^{c} for the reaction $12 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{I})+15 \mathrm{O}_{2}(\mathrm{~g})$
（c）Calculate ΔH^{c} for the reaction

$$
\mathrm{C}_{6} \mathrm{H}_{6}(g)+\frac{15}{2} \mathrm{O}_{2}(g) \longrightarrow 6 \mathrm{CO}_{2}(g)+3 \mathrm{H}_{2} \mathrm{O}(g)
$$

Given that $\Delta H_{v a p}$ for benzene at $25^{\circ} \mathrm{C}$ is $33.6 \mathrm{~kJ} / \mathrm{mol}$ ；

$$
\Delta H_{v a p} \text { for water at } 25^{\circ} \mathrm{C} \text { is } 44.0 \mathrm{~kJ} / \mathrm{mol} .
$$

Ans ：
（a）$\Delta H^{\mathrm{c}}=\sum \Delta H_{f}^{\mathrm{c}}$ 生成物 $-\sum \Delta H_{f \text { 反栕物 }}^{\mathrm{c}}$ $\Delta H^{\mathrm{c}}=\left\lfloor 6 \times \Delta H_{f}^{\mathrm{c}} \mathrm{CO}_{2}(g)+3 \times \Delta H_{f}^{\mathrm{c}} \mathrm{H}_{2} O(l)\right\rfloor-\left\lfloor\Delta H_{f}^{\mathrm{c}} \mathrm{C}_{6} H_{6}(l)\right\rfloor$
$-3267.4=[6 \times(-393.5)+3 \times(-285.8)]-\Delta H_{f}^{\mathrm{c}} C_{6} H_{6}(l)$
$\Delta H_{f}^{\mathrm{c}} C_{6} H_{6(l)}=[(-2361)+(-857.4)]+3267.4$

$$
=+49.0 \mathrm{~kJ} / \mathrm{mol}
$$

（b）

$$
\begin{align*}
& {\left[\mathrm{C}_{6} \mathrm{H}_{6}(l)+\frac{15}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 6 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right] \mathrm{x} } \tag{-2}\\
& \Rightarrow \quad 12 \mathrm{CO}_{2}(g)+6 \mathrm{H}_{2} \mathrm{O}(l) \rightarrow 2 \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{l})+15 \mathrm{O}_{2}(g) \\
& \Delta H^{\circ}=(-3267.4) \times(-2)=+6534.8 \mathrm{~kJ}
\end{align*}
$$

（c）（1） $\mathrm{C}_{6} \mathrm{H}_{6}(l)+\frac{15}{2} \mathrm{O}_{2}(g) \longrightarrow 6 \mathrm{CO}_{2}(g)+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta \mathrm{H}_{1}^{\mathrm{c}}=-3267.4 \mathrm{~kJ}$
（2） $\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \quad \Delta H_{2}^{\mathrm{o}}=+44.0 \mathrm{~kJ}$
（3）$\quad C_{6} H_{6}(l) \longrightarrow C_{6} H_{6}(g) \quad \Delta H_{3}^{\circ}=\Delta H_{\text {vap }}=33.6 \mathrm{~kJ}$
$1 \times(1)+3 \times(2)-1 \times(3):$

$$
\begin{array}{ll}
\mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{l})+\frac{15}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow & 6 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\
+ & 3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \\
+ & \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{~g})
\end{array} \mathrm{+} \longrightarrow \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{l}) \mathrm{l}
$$

$$
\mathrm{C}_{6} \mathrm{H}_{6}(g)+\frac{15}{2} \mathrm{O}_{2}(g) \longrightarrow 6 \mathrm{CO}_{2}(g)+3 \mathrm{H}_{2} \mathrm{O}(g)
$$

$$
\begin{aligned}
\Delta H^{\mathrm{c}} & =1 \times \Delta H_{1}^{\mathrm{c}}+3 \times \Delta H_{2}^{\circ}-1 \times \Delta H_{3}^{\circ} \\
& =(-3267.4)+3 \times(44.0)-(33.6) \\
& =-3169.0 \mathrm{~kJ}
\end{aligned}
$$

Ex 8．8．Sodium carbonate is a white powder used in the manufacture of glass．When hydrochloric acid is added to a solution of sodium carbonate，carbon dioxide gas is formed．The equation for the reaction is

$$
2 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{CO}_{3}^{2-}(a q) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

（a）Calculate ΔH^{c} for the thermochemical equation．
（b）Calculate $\Delta H^{\text {c }}$ when 25.0 mL of 0.186 M HCl is added to sodium carbonate．

Ans：
（a）$\Delta H^{\mathrm{c}}=\sum \Delta H_{f}^{\mathrm{c} \text { 生成物 }}$ $-\sum \Delta H_{f \text { 反應物 }}^{\mathrm{c}}$

$$
\begin{aligned}
& =\left[\Delta H_{f}^{\mathrm{c}} \mathrm{CO}_{2}(g)+\Delta H_{f}^{\mathrm{c}} \mathrm{H}_{2} \mathrm{O}(l)\right]-\left[2 \Delta H_{f}^{\mathrm{c}} H^{+}(a q)+\Delta H_{f}^{\mathrm{c}} \mathrm{CO}_{3}^{2-}(a q)\right] \\
& =[(-393.5)+(-285.8)]-[2 \times(0.00)+(-677.1)]
\end{aligned}
$$

$$
=-2.2 \mathrm{~kJ}
$$

（b）

$$
\begin{aligned}
& n_{H C l}=\mathrm{n}_{H^{+}}=\mathrm{V} \times \mathrm{M}=\frac{25.00}{1000} \times 0.186=0.00465 \mathrm{~mol} \\
& \Delta H^{\circ}=0.00465 \mathrm{~mol} \mathrm{H}^{+} \times \frac{-2.2 \mathrm{~kJ}}{2 \mathrm{~mol} \mathrm{H}^{+}}=-5.1 \times 10^{-3} \mathrm{~kJ}
\end{aligned}
$$

§ 8－6 Bond enthalpy 鍵結焓：均爲＂＋＂値

When one mole of bonds is broken in the gases state．

$$
\begin{array}{lll}
H_{2}(g) \longrightarrow 2 H(g) & \Delta H^{\circ}=436 \mathrm{~kJ} & \text { H-H bond enthalpy }=436 \mathrm{~kJ} \\
\mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{Cl}(\mathrm{~g}) & \Delta H^{\circ}=243 \mathrm{~kJ} & \text { Cl-Cl bond enthalpy }=243 \mathrm{~kJ}
\end{array}
$$

§ 8－7 The First law of Thermodynamics

Thermochemistry is a branch of thermodynamics．

Thermodynamics distinguishes between two types of energy one of these is heat （q）；the other is work（w）．Work includes all forms of energy except heat．

The law of conservation of energy：能量不滅定律

$$
\Delta U_{\text {system }}=-\Delta U_{\text {surroundings }}
$$

The first law of Thermodynamics ：
In any process，the total change in energy of a system，ΔU is equal to the sum of the heat， q ，and the work， w ，transfer between the system and the surroundings．

For an isolated system，the total energy of the system remains constant．

$$
\Delta U=\mathbf{q}+\mathbf{w}
$$

Isolated system 獨立系統：A system does not allow matter or energy come in or get out of the system．

Ex 8－9 ：Calculate ΔU of a gas for a process in which the gas．
a）absorbs 20 J of heat and does 12 J of work by expanding．
b）evolves 30 J of heat and has 52 J work done on it as it contacts．
Ans：

$$
\Delta U=\mathrm{q}+\mathrm{w}
$$

a）

$$
\begin{gathered}
q=+20 \mathrm{~J} \quad \mathrm{w}=-12 \mathrm{~J} \\
\Delta U=+20+(-12)=+8 \mathrm{~J}
\end{gathered}
$$

b）

$$
q=-30 \mathrm{~J} \quad \mathrm{w}=+52 \mathrm{~J}
$$

$$
\Delta U=-30+52=+22 \mathrm{~J}
$$

$\mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta U=-885 \mathrm{~kJ}$

	ΔU	q	w
本生燈	-885 kJ	-890 kJ	+5 kJ
汽車引擎	-885 kJ	-665 kJ	-220 kJ
燃料電池＊	-885 kJ	-67 kJ	-818 kJ

＊以功率而言，此項最佳．
$\S \Delta H$ versus ΔU
Coffee－cup calorimeter $\mathrm{P}=\mathrm{C} \quad \Delta H=\mathrm{q}_{P}$

Bomb calorimeter $\quad \mathrm{V}=\mathrm{C} \quad \mathrm{w}=0 \quad \Delta U=\mathrm{q}_{V}$

$$
\begin{aligned}
\mathrm{H} & =\mathrm{U}+\mathrm{PV} \quad 1 \text { mole } 25^{\circ} \mathrm{C} \\
\mathrm{PV} & =1 \times 0.0821 \times(25+273) \\
& =24.5 \mathrm{~L}-\mathrm{atm} \times 0.1013 \mathrm{~kJ} \\
& =2.48 \mathrm{~kJ}
\end{aligned}
$$

$$
1 \mathrm{~L}-\mathrm{atm}=0.1013 \mathrm{~kJ}
$$

$$
\Delta H=\Delta U+\Delta P V
$$

$$
=\Delta U+\left[(P V)_{\text {齐物 }}-(P V)_{\text {反應物 }}\right]
$$

$$
\Delta H=\Delta U+\Delta n_{g} R T \quad \Delta n_{g} \text { :氣體物質莫耳數改變量 }
$$

$25^{\circ} \mathrm{C}$ 下, $\mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta U=-885 \mathrm{~kJ}$

$$
\begin{aligned}
\Delta n_{g} & =1-(1+2)=-2 \mathrm{~mol} \\
\mathrm{R}: & 8.314 \mathrm{~J} / \mathrm{mol} . k \quad \mathrm{~T}: 298 \mathrm{~K} \\
\Delta H & =\Delta U+\Delta n_{g} R T \\
& =(-885 \mathrm{~kJ})+(-2) \times 8.314 \times 298 \\
& =(-885 \mathrm{~kJ})+\left(-5.0 \times 10^{3} \mathrm{~J}\right) \\
& =(-885 \mathrm{~kJ})+(-5.0 \mathrm{~kJ}) \\
& =-890 \mathrm{~kJ} \\
\Delta H & =-890 \mathrm{~kJ} ; \quad \Delta U=-885 \mathrm{~kJ}
\end{aligned}
$$

$$
\text { 大多反應, 其 w 佔不到 } 1 \% \text {, 可忽略. }
$$

Ex 8．10．Calculate ΔH and ΔU at $25^{\circ} \mathrm{C}$ for the reaction takes place when an oxyacetylene torch is used．

$$
\mathrm{C}_{2} \mathrm{H}_{2}(g)+\frac{5}{2} \mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{CO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(g)
$$

Ans ：

$$
\begin{aligned}
\Delta H & =\sum \Delta H_{f}^{\mathrm{c}} \text { 生成物 }_{\mathrm{\Delta H}}-\sum \Delta H_{f \text { 反麠物 }}^{\mathrm{c}} \\
& =\left[2 \times \Delta H_{f}^{\mathrm{c}} \mathrm{CO}_{2}(g)+\Delta H_{f}^{\mathrm{c}} \mathrm{H}_{2} O(g)\right]-\left[\Delta H_{f}^{\mathrm{c}} C_{2} H_{2}(g)\right] \\
& =[2 \times(-393.5)+(-241.8)]-(226.7) \\
& =-1255.5 \mathrm{~kJ} \\
\Delta n_{g} & =(2+1)-\left(1+\frac{5}{2}\right)=-0.5 \mathrm{~mol} \\
\Delta H & =\Delta U+\Delta n_{g} R T
\end{aligned}
$$

$$
\begin{aligned}
\Delta U & =\Delta H-\Delta n_{g} R T \\
& =-1255.5-(-0.5) \times(8.314) \times(25+273) \\
& =-1255.5 \mathrm{~kJ}+1.2 \mathrm{~kJ} \\
& =-1254.3 \mathrm{~kJ}
\end{aligned}
$$

