Ch． 10 Solution

Solution：is a homogeneous mixture of solute distributed through a solvent．

Solute：Gas
Liquid
Solid
$\therefore 3^{2}=9$ 大類 Solution
最重要者：Solvent：liquid 尤其是 $\mathrm{H}_{2} \mathrm{O}$
\Downarrow
Aqueous solution

$\mathrm{d}:$	真溶液 $<10 \AA$	膠體溶液
$10 \sim 10^{4} \AA$	懸浮液	
$>10^{4} \AA$		

Ch．10．1．Concentration units： $\mathrm{M} \checkmark \mathrm{m} \bullet \mathrm{N}, ~ \mathrm{X} \bullet$ mass percent
Ch．10．2．Principles of solubility 極溶極，非極溶非極
Ch．10．3．Colligative properties of nonelectrolytes

Colligative properties 依數性質：
Solution properties depend on the concentration of solution particles rather than their nature．

Colligative properties 包括：沸點上升，凝固點下降，滲透壓，蒸氣壓
下降．
Ch．10．4．Colligative properties of electrolytes． $1 \mathrm{M}=\mathrm{nN}$

§10－1．Concentration units

Molarity（M）容積莫耳濃度

$$
\mathrm{M}=\frac{\text { moles } \quad \text { solute }}{\text { liters } \quad \text { solution }}
$$

配置不同濃度之溶液：

$$
\begin{aligned}
& \left.\mathrm{n}_{\text {solute }}(\text { concentrated solution })=\mathrm{n}_{\text {solute }} \text { (dilute solution }\right) \\
& \qquad M_{c} \cdot V_{c}=M_{d} \cdot V_{d}
\end{aligned}
$$

Ex 10．1：Copper sulfate is widely used as a dietary supplement for animal feed．A lab technician prepares a＂stock＂solution of CuSO_{4} by adding 79.80 g of CuSO_{4} to enough water to make 500.0 mL solution．An experiment requires a 0.1000 M solution of CuSO_{4} ．
（a）What is the molarity of the CuSO_{4}＂stock＂solution prepared by the technician？
（b）How would you prepare 1.500 L of 0.1000 M solution from the stock solution？
Ans：
（a） MM $_{\text {CuSO }_{4}}=63.55+32.07+16.00 \times 4=159.6$
（b）

$$
\begin{gathered}
\mathrm{M}=\frac{79.80 / 159.6}{500 / 1000}=1.000 \mathrm{M} \\
\mathrm{M}_{c} V_{c}=\mathrm{M}_{d} V_{d} \\
1.000 \mathrm{M} \times \mathrm{V}_{c}=0.100 \mathrm{M} \times 1.500 \mathrm{~L} \\
\mathrm{~V}_{c}=0.1500 \mathrm{~L}
\end{gathered}
$$

§ Mole Fraction：X 莫耳分率

$$
\begin{gathered}
\mathrm{X}_{\mathrm{A}}=\frac{n_{\mathrm{A}}}{n_{\text {ot }}} \\
\mathrm{X}_{\mathrm{A}}+\mathrm{X}_{\mathrm{B}}+\ldots \ldots .=1
\end{gathered}
$$

Ex 10．2：Hydrogen peroxide is used by some water treatment systems to remove the disagreeable odor of sulfides in drinking water．It is available commercially in a 20.0% by mass aqueous solution． What is the mole fraction of $\mathrm{H}_{2} \mathrm{O}_{2}$ ？
Ans ：
Basis： 100.0 g solution

$$
\begin{aligned}
& \mathrm{n}_{\mathrm{H}_{2} \mathrm{O}_{2}}=\frac{20.0}{34.02}=0.588 \mathrm{~mol} \\
& \mathrm{n}_{\mathrm{H}_{2} \mathrm{O}}=\frac{80.0}{18.02}=4.44 \mathrm{~mol} \\
& \mathrm{X}_{\mathrm{H}_{2} \mathrm{O}_{2}}=\frac{\mathrm{n}_{\mathrm{H}_{2} \mathrm{O}_{2}}}{n_{\text {tot }}}=\frac{0.588}{0.588+4.44}=0.117
\end{aligned}
$$

§ Mass percent；Parts per Million（ppm）；Parts per Billion（ppb）

Mass percent of solute $(\%)=\frac{\text { mass of solute }}{\text { total mass of solution }} \times 100$

Ex： 24 g of NaCl dissolve in 152 g of water
Mass percent of $\mathrm{NaCl}(\%)=\frac{24}{24+152} \times 100$

$$
=14 \%
$$

Ppm；ppb：when the amount of solute is very small；as the trace impurities in water．

$$
\begin{aligned}
\text { ppm solute } & =\frac{\text { wt. of } \text { solute }}{\text { wt. of solution }} \times 10^{6} \\
& =\mathrm{Wt} \% \times 10^{4}
\end{aligned}
$$

Ex：As 含量；USA lower than $5 \times 10^{-8} \mathrm{~g}$ per gram of water．

$$
\text { ppm As }=\frac{5 \times 10^{-8}}{1} \times 10^{6}=5 \times 10^{-2}=0.05 \mathrm{ppm}
$$

$\mathrm{ppb} \mathrm{As}=\frac{5 \times 10^{-8}}{1} \times 10^{9}=50 \mathrm{ppb}$

§ Molality（m）重量莫耳濃度

Number of moles of solute per kilogram $(1000 \mathrm{~g})$ of solvent．
Molality $(\mathrm{m})=\frac{\text { moles solute }}{\text { ki log rams solvent }}$

Ex 10－3：Glucose， $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ ，in water is often used for intravenous（靜脈注射） feeding．Sometimes sodium ions are added to the solution．A pharmacist prepares a solution by adding 2.0 mg of sodium ions（in the form of NaCl ）， 6.00 g of glucose，and 112 g of water．
（a）What is the molality of the glucose in solution？
（b）How many ppm of Na^{+}does the solution contain？

Ans：
（a） $\mathrm{MM}_{C_{6} H_{12} O_{6}}=12.01 \times 6+1.008 \times 12+16.00 \times 6=180.16 \mathrm{~g} / \mathrm{mol}$

$$
\mathrm{m}_{C_{6} H_{12} O_{6}}=\frac{\text { moles solute }}{\text { ki } \log \text { ramssolvent }}=\frac{6.00 / 180.16}{112 / 1000}=0.297 \mathrm{~m}
$$

（b） $\mathrm{ppm} \mathrm{Na}^{+}=\frac{w t . \text { of solute }}{\text { wt．of solution }}=\frac{2.0 \times 10^{-3} \mathrm{~g}}{2.0 \times 10^{-3}+6.00+112} \times 10^{6}=17 \mathrm{ppm}$

§ Normality 當量濃度 N

$$
\mathrm{N}=\frac{\text { 溶質重量 }}{\text { 溶質之當量 }} \quad \text { 溶質L數 } \quad 1 \mathrm{M}=\mathrm{nN}
$$

用途：1．氧化－還原作用 2．酸鹼中和

\S Conversions between concentration units

When the original concentration is
Mass percent
Molarity（M）
Molality（m）
Mole fraction（X）
start with
100 g solution
1.00 L solution

1000 g solvent
1 mole（solution＋solvent）

Ex 10－4：Using the information in Fig10．2，calculate

a）the mass percent of HCl and water in concentrated HCl
b）the molality of $\mathrm{HCl}(\mathrm{m})$
c）the molarity of $\mathrm{HCl}(\mathrm{M})$
Ans ：
a）The mass percent of $\mathrm{HCl}=37.7 \%$

$$
\text { Water }=100-37.7=62.3 \%
$$

b）Basis ： 100.0 g solution

$$
\begin{aligned}
& m_{H C l}=100 \times 37.7 \%=37.7 \mathrm{~g} \\
& \mathrm{n}_{\mathrm{HCl}}=\frac{37.7}{1.01+35.45}=\frac{37.7}{36.46}=1.03 \mathrm{~mol} \\
& \mathrm{~m}=\frac{\text { moles solute }}{\text { kilog } \text { rams solvent }}=\frac{1.03}{62.3 / 1000}=16.5 \mathrm{~m}
\end{aligned}
$$

c） sp．gr．$=1.1906$
volume of $100.0 \mathrm{~g} \mathrm{HCl}_{(\mathrm{aq})}=\frac{100}{1.1906}=84.0 \mathrm{~mL}$
$\mathrm{M}=\frac{\text { moles } \text { solute }}{\text { liter solvent }}=\frac{1.03}{84.0 / 1000}=12.3 \mathrm{M}$

§10－2 Principles of solubility

Solubility 影響因素

I The nature of solvent and solute particles and the interaction between them．
I T
I P of gaseous solute．

Solute－solvent interaction：
＂like dissolves like＂極溶極 非極溶非極
$\mathrm{C}_{5} \mathrm{H}_{12}$ pentane（非極性）與 hexane $\mathrm{C}_{6} \mathrm{H}_{14}$（非極性）$\rightarrow$ 互溶 $\mathrm{C}_{5} \mathrm{H}_{12}$ 與 $\mathrm{H}_{2} \mathrm{O} \rightarrow$ 不互溶

Substance	Formula	Solubility （g solute／L $\mathrm{H}_{2} \mathrm{O}$ ）
Methyl alcohol	$\mathrm{CH}_{3} \mathrm{OH}$	Completely soluble
Ethyl alcohol	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$	Completely soluble
Propanol	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$	Completely soluble
Butanol	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$	74
Pentanol	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$	27
Hexanol	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$	6.0
Heptanol	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$	1.7

Vitamin B，C（極性）\rightarrow 水溶性
Vitamin A，D，E，K（非極性）\rightarrow 脂溶性
離子固體在水中之溶解度（Fig4．3） K_{sp} 計算値 $>\mathrm{K}_{\mathrm{sp}}$ 理論値，會生成沉澱。

沉澱之影響因素：
1．水與離子間之吸引力＞離子離子間吸引力
\Downarrow
完全溶解 例： $\mathrm{NaCl}, ~ \mathrm{NaOH}$
2．水與離子間之吸引力＜離子離子間吸引力
\Downarrow
沉澱 例： $\mathrm{CaCO}_{3}, ~ \mathrm{CaSO}_{4}$

§ Effect of Temperature on Solubility

溶質：固體及液體 $\Rightarrow \begin{array}{ccc}\Rightarrow \text { 吸熱反應 } & \mathrm{T} \uparrow & \text { Solubility } \uparrow \\ & \text { 放熱反應 } & \mathrm{T} \uparrow\end{array}$

$$
\text { 氣體 } \Rightarrow \mathrm{T} \uparrow \quad \text { Solubility } \downarrow \quad \because \Delta \mathrm{H}<0
$$

§ Effect of Pressure on Solubility

溶質：固體 $\Rightarrow \mathrm{P}$ 之影響少
液體 $\Rightarrow P$ 之影響少

氣體 $\rightarrow \mathrm{P} \uparrow \rightarrow$ Solubility \uparrow

（b）
Henry＇s law ：

$$
\begin{array}{cl}
\mathrm{C}_{\mathrm{g}}=\mathrm{k} \cdot \mathrm{Pg} & \mathrm{C}_{\mathrm{g}}: \text { gas 之 concentration } \\
& \mathrm{k}: \text { proportional constant } \\
& \mathrm{Pg}: \text { the partial pressure of the gas } \\
& \text { over the solution. }
\end{array}
$$

At low to moderate P ，gas solubility is directly proportional to P ．
Ex 10－5：The solubility of pure nitrogen in blood at body temperature， $37^{\circ} \mathrm{C}$ ，and one atmosphere is $6.2 \times 10^{-4} \mathrm{M}$ ．If a diver breathes air （ $X_{N_{2}}=0.78$ ）at a depth where the total pressure is 2．50atm， calculate the concentrating of nitrogen in his blood．

Ans ：

$$
\begin{aligned}
\mathrm{C}_{\mathrm{g}} & =\mathrm{k} \cdot \mathrm{P}_{\mathrm{g}} \\
\mathrm{k} & =\frac{C_{g}}{P_{g}}=\frac{6.2 \times 10^{-4}}{1.00}=6.2 \times 10^{-4} \mathrm{M} / \mathrm{atm} \\
\mathrm{P}_{\mathrm{N} 2} & =\mathrm{X}_{\mathrm{N} 2} \cdot \mathrm{P}_{\mathrm{tot}}=0.78 \cdot 2.50=2.0 \mathrm{~atm} \\
& \begin{aligned}
{\left[\mathrm{N}_{2}\right] } & =\mathrm{C}_{\mathrm{N} 2}=\mathrm{k} \cdot \mathrm{P}_{\mathrm{g}} \quad \text { 另解 }: 6.2 \times 10^{-4}: 1.00=\mathrm{x}: 2.0 \\
& =6.2 \times 10^{-4} \times 2.0 \\
& =1.2 \times 10^{-3} \mathrm{M}
\end{aligned} \quad \mathrm{x}=1.2 \times 10^{-3} \mathrm{M}
\end{aligned}
$$

＂Bends＂水夫病

一人自深海（高壓）快速游上海贡面（低壓），造成氣體之溶解度降低，使氣體由 blood 及其他 body fluids 以 bubble 析出，損及血液循環系統及神經系統。
\Rightarrow 潛水夫以 $\mathrm{He}-\mathrm{O}_{2}$ 取代 $\mathrm{N}_{2}-\mathrm{O}_{2}, \cdots \mathrm{He}$ 之溶解度僅爲 N_{2} 之 $1 / 3$ 。減壓時較少氣體析出。

§10－3 Colligative properties of nonelectrolytes

Colligative properties（依數性質）：

Solution properties depend primary on the concentration of solute particles rather than their nature．

依數性質包含：vapor pressure lowering 蒸氣壓下降
osmotic pressure 滲透壓
boiling point elevation 沸點上升
freezing point depression 凝固點下降

For nonelectrolytes：
低濃度 $(<1 \mathrm{M})$ deviations 小於 few percent
高濃度 deviations 則較大
§ Vapor pressure lowering
The vapor pressure of water over the solution is less than that of pure water．
$P_{1}=X_{1} P_{1}{ }^{\circ} \quad P_{1}:$ vapor pressure of solvent over the solution $\mathrm{P}_{1}{ }^{\circ}$ ：at same T ，vapor pressure of pure solvent X_{1} ：mole fraction of solvent

$$
\begin{aligned}
\Delta \mathrm{P} & =\left(1-\mathrm{X}_{1}\right) \mathrm{P}_{1}{ }^{\circ} & & \Delta \mathrm{P}: \text { vapor lowering } \\
& =\mathrm{X}_{2} \mathrm{P}_{1}{ }^{\circ} & & \mathrm{X}_{2}: \text { mole fraction of solute }
\end{aligned}
$$

Ex10－6：A solution contains 82.0 g of glucose， $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{MM}=180.16 \mathrm{~g} / \mathrm{mol})$ ， in 322 g of water．Calculate the vapor pressure lowering at $25^{\circ} \mathrm{C}$（vapor pressure of pure water， $\mathrm{P}_{\mathrm{H} 2 \mathrm{O}}^{\circ}=23.76 \mathrm{mmHg}$ ）
Ans：

$$
\begin{aligned}
\Delta \mathrm{P}= & \mathrm{X}_{2} \mathrm{P}_{1}^{\circ} \\
n_{C_{6} H_{12} O_{6}} & =\frac{82.0}{180.16}=0.455 \mathrm{~mol} \\
n_{H_{2} \mathrm{O}} & =\frac{322}{18.02}=17.9 \mathrm{~mol} \\
X_{C_{6} H_{12} O_{6}} & =\frac{0.455}{17.9+0.455}=0.0248 \\
\Delta \mathrm{P} & =X_{C_{6} H_{12} O_{6}} P_{H_{2} \mathrm{O}}^{0} \\
& =0.0248 \times 23.76 \\
& =0.589 \mathrm{mmHg}
\end{aligned}
$$

§ Boiling Point Elevation and Freezing Point Lowering

$$
\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{T}_{\mathrm{b}}-\mathrm{T}_{\mathrm{b}}{ }^{\circ} \quad \Delta \mathrm{T}_{\mathrm{b}}=\mathrm{k}_{\mathrm{b}} \cdot \mathrm{~m} \quad \text { 沸點上升 }
$$

$$
\text { 水 } \mathrm{k}_{\mathrm{b}}=0.52^{\circ} \mathrm{C} / \mathrm{m}
$$

$\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{T}_{\mathrm{f}}{ }^{\circ}-\mathrm{T}_{\mathrm{f}} \quad \Delta \mathrm{T}_{\mathrm{f}}=\mathrm{k}_{\mathrm{f}} \cdot \mathrm{m} \quad$ 凝固點下降
如此 k_{f} 爲＂＋＂値 水 $\mathrm{k}_{\mathrm{f}}=1.86^{\circ} \mathrm{C} / \mathrm{m}$

Ex10－7：An anti freeze solution（抗凍劑）is prepared containing $50.0 \mathrm{~cm}^{3}$
of ethylene glycol， $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2} \quad(\mathrm{MM}=62.07 \mathrm{~g} / \mathrm{mol}, \mathrm{d}=1.12$ g / mL ），in 50.0 g of water．Calculate the freezing point of this $50-50$ volume ratio mixture．
Ans：

$$
m_{C_{2} H_{6} O_{2}}=50.0 \times 1.12=56.0 \mathrm{~g}
$$

$$
\begin{aligned}
n_{C_{2} H_{6} O_{2}} & =\frac{56.0}{62.07}=0.902 \mathrm{~mol} \\
\mathrm{~m}= & \frac{\text { 質 mol數 }}{\text { 劑 } \mathrm{kg} \text { 數 }}=\frac{0.902}{50.0 / 1000}=18.0 \mathrm{~m} \\
\Delta \mathrm{~T}_{\mathrm{f}} & =\mathrm{k}_{\mathrm{f}} \cdot \mathrm{~m} \\
& =1.86 \cdot 18.0=33.5^{\circ} \mathrm{C} \\
\mathrm{~T}_{\mathrm{f}} & =\mathrm{T}_{\mathrm{f}}^{\circ}-\Delta \mathrm{T}_{\mathrm{f}} \\
& =0-33.5 \\
& =-33.5^{\circ} \mathrm{C}
\end{aligned}
$$

§Osmotic Pressure 滲透壓

滲透壓：濃度低的向濃度高的滲透

$$
\pi=\frac{n R T}{V}=M \times R T
$$

Ex： 0.10 M solution at $25^{\circ} \mathrm{C}$ 下之 Osmotic Pressure

$$
\begin{aligned}
\pi & =\mathrm{M} \cdot \mathrm{R} \cdot \mathrm{~T} \\
& =0.10 \cdot 0.0821 \cdot(25+273)=2.4 \mathrm{~atm}
\end{aligned}
$$

Ex 10－8：Calculate the osmotic pressure at $15^{\circ} \mathrm{C}$ of a solution prepared by dissolving 50.0 g of sugar， $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$ ，in enough water to form one liter of solution
Ans ：

$$
\begin{aligned}
\mathrm{MM} & =12.01 \times 12+1.008 \times 22+16.00 \times 11=342.3 \mathrm{~g} / \mathrm{mol} \\
n & =\frac{50.0}{342.3}=0.146 \mathrm{~mol} \\
M & =\frac{\text { 質莫耳數 }}{\text { 液L }}=\frac{0.146}{1}=0.146 \mathrm{C} \\
\pi & =\mathrm{M} \cdot \mathrm{R} \cdot \mathrm{~T} \\
& =0.146 \cdot 0.0821 \cdot(15+273) \\
& =3.45 \mathrm{~atm}
\end{aligned}
$$

§ Determination of Molar Masses from Colligative Properties

Ex10－9：A laboratory experiment on colligative properties directs students to determine the molar mass of an unknown solid．Each student receives 1.00 g of solute， 225 mL of solvent and information that may be pertinent to the unknown．
（a）Student A determines the freezing point of her solution to be $6.18^{\circ} \mathrm{C}$ ．She is told that her solvent is cyclohexane，which has density $0.779 \mathrm{~g} / \mathrm{mL}$ ，freezing point $6.50^{\circ} \mathrm{C}$ and $\mathrm{k}_{\mathrm{f}}=20.2^{\circ} \mathrm{C} / \mathrm{m}$ ．
（b）Student B determines the osmotic pressure of his solution to be 0.846 atm at $25^{\circ} \mathrm{C} . \mathrm{He}$ is told that his solvent is water $(\mathrm{d}=1.00$ b / mL ）and that the density of the solution is also $1.00 \mathrm{~g} / \mathrm{mL}$ ．
Ans ：
（a）$\Delta T_{f}=\mathrm{T}_{f}^{0}-\mathrm{T}_{f}=6.50-6.18=0.32^{\circ} \mathrm{C}$

$$
\Delta T_{f}=\mathrm{m} \times \mathrm{k}_{f}
$$

$$
\mathrm{m}=\frac{\Delta T_{f}}{k_{f}}=\frac{0.32}{20.2}=0.016 \mathrm{~m}=\frac{\text { moles solute }}{\mathrm{kg} \text { solvent }}
$$

$$
\mathrm{m}_{\text {solvent }}=225 \mathrm{~mL} \times \frac{0.779 \mathrm{~g}}{m L}=175 \mathrm{~g}=0.175 \mathrm{~kg}
$$

$$
\mathrm{n}_{\text {solute }}=\mathrm{m} \times \mathrm{kg} \text { solvent }=0.016 \times 0.175=2.8 \times 10^{-3} \mathrm{~mol}
$$

$$
\mathrm{MM}_{\text {solute }}=\frac{1.00}{2.8 \times 10^{-3}}=357=3.6 \times 10^{2} \mathrm{~g} / \mathrm{mol}
$$

（b）$\pi=$ MRT

$$
\begin{aligned}
& \mathrm{M}=\frac{\pi}{R T}=\frac{0.846}{0.0821 \times 298}=0.0346 \mathrm{~mol} / \mathrm{L}=\frac{m o l e s}{} \text { solute } \\
& L \text { solution } \\
& \mathrm{m}_{\text {solution }}=1+225=226 \mathrm{~g} \\
& \mathrm{~V}_{\text {solution }}=\frac{226 \mathrm{~g}}{1.00 \mathrm{~g} / \mathrm{mL}}=226 \mathrm{~mL}=0.226 \mathrm{~L} \\
& \mathrm{n}_{\text {solute }}=\mathrm{M}_{\text {solute }} \times \mathrm{V}_{\text {solution }}=0.0346 \times 0.226=7.82 \times 10^{-3} \mathrm{~mol} \\
& \mathrm{MM}=\frac{m}{n}=\frac{1.00}{7.82 \times 10^{-3}}=128 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

Osmotic Pressure 測得之數値較大；較 $\underline{\Delta \mathrm{T}_{\mathrm{b}}} \underline{\mathrm{b}}, \Delta \mathrm{T}_{\mathrm{f}}$ 易得準確之結果

例： 0.0010 M 水溶液；$\pi=0.024 \mathrm{~atm}=18 \mathrm{mmHg}$

$$
\begin{aligned}
& \Delta \mathrm{T}_{\mathrm{f}}=1.86 \times 10^{-3{ }^{\circ} \mathrm{C}} \\
& \Delta \mathrm{~T}_{\mathrm{b}}=5.2 \times 10^{-4{ }^{\circ} \mathrm{C}}
\end{aligned}
$$

§ Colligative Properties of electrolytes

An electrolyte should have a greater effect on Colligative Properties than those of a nonelectrolytes.

One mole glucose dissolves in water, one mole of solute molecules is obtained.
One mole NaCl dissolves in water, two mole of solute ions is obtained.
One mole CaCl_{2} dissolves in water, three mole of solute ions is obtained.
1.0 M solution of glucose, NaCl and CaCl_{2} at $25^{\circ} \mathrm{C}$
Glucose $\quad \mathrm{NaCl} \quad \mathrm{CaCl}_{2}$
$\Delta \mathrm{P} \quad 0.42 \mathrm{mmHg} \quad 0.77 \mathrm{mmHg} \quad 1.3 \mathrm{mmHg}$

$$
\begin{aligned}
& \Delta \mathrm{T}_{\mathrm{f}}=\mathrm{i} \times \mathrm{k}_{\mathrm{f}} \cdot \mathrm{~m} \\
& \Delta \mathrm{~T}_{\mathrm{b}}=\mathrm{i} \times \mathrm{k}_{\mathrm{b}} \cdot \mathrm{~m} \\
& \pi=\mathrm{i} \times \mathrm{M} \cdot \mathrm{RT}
\end{aligned}
$$

i : the number of moles of ions formed per mole of electrolyte

Ex10-10: Estimate the freezing points of 0.20 m water solutions of
a). KNO_{3}
b). $\mathrm{Cr}\left(\mathrm{NO}_{3}\right)_{3}$

Ans :
a) $\mathrm{KNO}_{3(\mathrm{~s})} \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{K}^{+}{ }_{(\text {eq })}+\mathrm{NO}_{3}^{-}{ }_{(\text {eq })}$

$$
\mathrm{i}=2
$$

$$
\Delta \mathrm{T}_{\mathrm{f}}=2 \times \mathrm{k}_{\mathrm{f}} \cdot \mathrm{~m}
$$

$$
=2 \cdot 1.86 \cdot 0.20=0.74
$$

$$
\mathrm{T}_{\mathrm{f}}=\mathrm{T}_{\mathrm{f}}{ }^{\circ}-\Delta \mathrm{T}_{\mathrm{f}}=0-0.74=-0.74^{\circ} \mathrm{C}
$$

b) $\mathrm{Cr}\left(\mathrm{NO}_{3}\right)_{3} \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{Cr}^{3+}{ }_{(e q)}+3 \mathrm{NO}_{3}{ }_{(e q)}$

$$
\begin{aligned}
\mathrm{i} & =4 \\
\Delta \mathrm{~T}_{\mathrm{f}} & =4 \times \mathrm{k}_{\mathrm{f}} \cdot \mathrm{~m} \\
& =4 \cdot 1.86 \cdot 0.20=1.5^{\circ} \mathrm{C} \\
\mathrm{~T}_{\mathrm{f}} & =-1.5^{\circ} \mathrm{C}
\end{aligned}
$$

TABLE 10．3 Freezing Point Lowerings of Solutions

	ΔT_{f} Observed $\left({ }^{\circ} \mathrm{C}\right)$		$i\left(\right.$ Calc from $\left.\Delta T_{f}\right)$	
Molality	NaCl	MgSO_{4}	NaCl	MgSO
0.00500	0.0182	0.0160	1.96	1.72
0.0100	0.0360	0.0285	1.94	1.53
0.0200	0.0714	0.0534	1.92	1.44
0.0500	0.176	0.121	1.89	1.30
0.100	0.348	0.225	1.87	1.21
0.200	0.685	0.418	1.84	1.12
0.500	1.68	0.995	1.81	1.07

i 値只有在稀薄溶液中，其値接近於理論値

$$
\mathrm{m} \uparrow \rightarrow \mathrm{i} \downarrow
$$

其理由爲：
1．靜電吸引力，濃度高時離子完全分離之效果較差
2．正，負離子生成離子對而非獨立之陽離子，陰離子
Ex10－11：The freezing point of a 0.5 m solution of oxalic acid， $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ ，in water is $-1.12^{\circ} \mathrm{C}$ ．Which of the following equations best represents what happen when oxalic acid dissolves in water？
a） $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4(\mathrm{~s})} \rightarrow \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4(\text { eq）})} \mathrm{i}=1$
b） $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4(s)} \rightarrow \mathrm{H}^{+}{ }_{(\varphi)}+\mathrm{HC}_{2} \mathrm{O}_{4}{ }^{-}($（eq）$\quad \mathrm{i}=2$
c） $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4(s)} \rightarrow 2 \mathrm{H}^{+}{ }_{(\text {eq })}+\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}{ }_{(\text {eq })} \quad \mathrm{i}=3$
Ans ：

$$
\begin{aligned}
\Delta \mathrm{T}_{\mathrm{f}} & =\mathrm{T}_{\mathrm{f}}{ }^{\circ}-\mathrm{T}_{\mathrm{f}} \\
& =0-(-1.12)=1.12^{\circ} \mathrm{C} \\
\Delta \mathrm{~T}_{\mathrm{f}} & =\mathrm{i} \times \mathrm{k}_{\mathrm{f}} \cdot \mathrm{~m} \\
1.12 & =\mathrm{i} \cdot 1.86 \cdot 0.5 \\
\mathrm{i} & =1.2 \rightarrow \text { 較接近 } 1 \therefore \mathrm{a} .
\end{aligned}
$$

i 値與解離度成正比．

