Ch.10 Solution

Solution: is a homogeneous mixture of solute distributed through a solvent.

Solute: C	bas		Solvent	: Gas
L	iquid			Liquid
S	olid			Solid
$\therefore 3^2$	² =9 大類	Solution		
最重	重要者:So	olvent : liquid	尤其是 H ₂ O)
			\Downarrow	
			Aqueous	s solution
d:	真溶液 <10Å	膠體溶液 10~10 ⁴ Å	懸浮液 >10 ⁴ Å	

Ch. 10.1. Concentration units: $M \cdot m \cdot N \cdot X \cdot mass$ percent

Ch. 10.2. Principles of solubility 極溶極、非極溶非極

Ch. 10.3. Colligative properties of nonelectrolytes

Colligative properties 依數性質:

Solution properties depend on the concentration of solution particles rather than their nature.

Colligative properties 包括: 沸點上升、凝固點下降、滲透壓、蒸氣壓下降,

Ch. 10.4. Colligative properties of electrolytes. 1M = nN

§10-1. Concentration units

Molarity (M) 容積莫耳濃度

$$M = \frac{moles \quad solute}{liters \quad solution}$$

配置不同濃度之溶液:
 $n_{solute}(concentrated \ solution) = n_{solute}(dilute \ solution)$
 $M_c \cdot V_c = M_d \cdot V_d$

Ex 10.1: Copper sulfate is widely used as a dietary supplement for animal feed. A lab technician prepares a "stock" solution of CuSO₄ by adding 79.80 g of CuSO₄ to enough water to make 500.0 mL solution. An experiment requires a 0.1000 M solution of CuSO₄.
(a) What is the molarity of the CuSO₄ "stock" solution prepared

- by the technician?
- (b) How would you prepare 1.500 L of 0.1000 M solution from the stock solution ?

(a)
$$MM_{CuSO_4} = 63.55 + 32.07 + 16.00 \times 4 = 159.6$$

 $M = \frac{79.80/159.6}{500/1000} = 1.000 \text{ M}$
(b) $M_cV_c = M_dV_d$
 $1.000 \text{ M} \times V_c = 0.100 \text{ M} \times 1.500 \text{ L}$
 $V_c = 0.1500 \text{ L}$

§ Mole Fraction:X 莫耳分率

$$\mathbf{X}_{A} = \frac{n_{A}}{n_{tot}}$$
$$\mathbf{X}_{A} + \mathbf{X}_{B} + \dots = 1$$

Ex 10.2: Hydrogen peroxide is used by some water treatment systems to remove the disagreeable odor of sulfides in drinking water. It is available commercially in a 20.0% by mass aqueous solution. What is the mole fraction of H_2O_2 ?

Ans:

Basis: 100.0 g solution

$$n_{H_2O_2} = \frac{20.0}{34.02} = 0.588 \text{ mol}$$

$$n_{H_2O} = \frac{80.0}{18.02} = 4.44 \text{ mol}$$

$$X_{H_2O_2} = \frac{n_{H_2O_2}}{n_{tot}} = \frac{0.588}{0.588 + 4.44} = 0.117$$

§ Mass percent; Parts per Million (ppm); Parts per Billion (ppb)

Mass percent of solute (%) = $\frac{mass \ of \ solute}{total \ mass \ of \ solution} \times 100$

Ex: 24g of NaCl dissolve in 152g of water

Mass percent of NaCl (%) =
$$\frac{24}{24+152} \times 100$$

= 14%

Ppm; ppb: when the amount of solute is very small; as the trace impurities in water.

ppm solute =
$$\frac{wt. of solute}{wt. of solution} \times 10^{6}$$

= Wt % × 10⁴

Ex: As 含量;USA lower than 5×10^{-8} g per gram of water. ppm As = $\frac{5 \times 10^{-8}}{1} \times 10^{6} = 5 \times 10^{-2} = 0.05 ppm$

ppb As =
$$\frac{5 \times 10^{-8}}{1} \times 10^{9} = 50 \, ppb$$

§ Molality (m) 重量莫耳濃度

Number of moles of solute per kilogram (1000g) of solvent. Molality (m) = $\frac{moles \quad solute}{ki \log rams \quad solvent}$

Ex 10-3: Glucose, C₆H₁₂O₆, in water is often used for intravenous (靜脈注射) feeding. Sometimes sodium ions are added to the solution. A pharmacist prepares a solution by adding 2.0 mg of sodium ions (in the form of NaCl), 6.00 g of glucose, and 112 g of water.
(a) What is the molality of the glucose in solution ?

(b) How many ppm of Na⁺ does the solution contain ?

Ans:

(a)
$$MM_{C_6H_{12}O_6} = 12.01 \times 6 + 1.008 \times 12 + 16.00 \times 6 = 180.16 \text{ g/mol}$$

 $m_{C_6H_{12}O_6} = \frac{moles \text{ solute}}{ki \log ramssolvent} = \frac{6.00/180.16}{112/1000} = 0.297 \text{ m}$
(b) $ppm \text{ Na}^+ = \frac{wt. \text{ of solute}}{wt. \text{ of solute}} = \frac{2.0 \times 10^{-3} \text{ g}}{2.0 \times 10^{-3} + 6.00 + 112} \times 10^6 = 17 \text{ ppm}$

§ Normality 當量濃度 N

§ Conversions between concentration units
 <u>When the original concentration is</u>
 Mass percent
 Molarity (M)
 Molality (m)
 Mole fraction(X)
 Start with
 100g solution
 1.00L solution
 1000g solvent
 1 mole (solution+solvent)

Ex 10-4: Using the information in Fig10.2, calculate

- a) the mass percent of HCl and water in concentrated HCl
- b) the molality of HCl (m)
- c) the molarity of HCl (M)

Ans :

- a) The mass percent of HCl = 37.7% Water = 100-37.7 = 62.3%
- b) Basis : 100.0g solution

$$m_{HCl} = 100 \times 37.7 \ \% = 37.7g$$

$$n_{HCl} = \frac{37.7}{1.01 + 35.45} = \frac{37.7}{36.46} = 1.03mol$$

$$m = \frac{moles \ solute}{ki \log rams \ solvent} = \frac{1.03}{62.3/1000} = 16.5m$$
c) sp. gr. = 1.1906
volume of 100.0g HCl_(aq) = $\frac{100}{1.1906} = 84.0mL$

$$M = \frac{moles \ solute}{liter \ solvent} = \frac{1.03}{84.0/1000} = 12.3M$$

§10-2 Principles of solubility

Solubility 影響因素

- I The nature of solvent and solute particles and the interaction between them.
- ΙΤ
- P of gaseous solute.

Solute-solvent interaction:

"like dissolves like" 極溶極 非極溶非極 C_5H_{12} pentane(非極性) 與 hexane C_6H_{14} (非極性) → 互溶 C_5H_{12} 與 H_2O → 不互溶

Substance	Formula	Solubility (g solute/L H ₂ O) Completely soluble	
Methyl alcohol	СН3ОН		
Ethyl alcohol	CH3CH2OH	Completely soluble	
Propanol	CH3CH2CH2OH	Completely soluble	
Butanol	CH3CH2CH2CH2OH	74	
Pentanol	CH3CH2CH2CH2CH2OH	27	
Hexanol	CH3CH2CH2CH2CH2CH2OH	6.0	
Heptanol	CH3CH2CH2CH2CH2CH2CH2OH	1.7	

Vitamin B、C(極性) → 水溶性 Vitamin A、D、E、K(非極性) → 脂溶性

離子固體在水中之溶解度 (Fig4.3) K_{sp}計算值>K_{sp}理論值, 會 生成沉澱.

沉澱之影響因素:

§ Effect of Temperature on Solubility

溶質: 固體及液體 ⇒ 吸熱反應 T↑ Solubility↑ 放熱反應 T↑ Solubility↓

氣體 ⇒ T↑ Solubility↓ ∴ $\Delta H < 0$

§ Effect of Pressure on Solubility

溶質: 固體 ⇒ P之影響少 液體 ⇒ P之影響少

At low to moderate P , gas solubility is directly proportional to P.

Ex 10-5: The solubility of pure nitrogen in blood at body temperature, 37°C, and one atmosphere is 6.2×10^{-4} M. If a diver breathes air ($X_{N_2} = 0.78$) at a depth where the total pressure is 2.50atm, calculate the concentrating of nitrogen in his blood. Ans:

"Bends"水夫病

一人自深海(高壓)快速游上海平面(低壓),造成氣體之溶解度降低,使氣體由 blood 及其他 body fluids 以 bubble 析出,損及血液循環系統及神經系統.

⇒潛水夫以 He-O₂取代 N₂-O₂, : He 之溶解度僅為 N₂之 1/3.: 減壓時 較少氣體析出.

§10-3 Colligative properties of nonelectrolytes

Colligative properties(依數性質):

Solution properties depend primary on the concentration of solute <u>particles</u> rather than their nature.

依數性質包含: vapor pressure lowering 蒸氣壓下降 osmotic pressure 滲透壓 boiling point elevation 沸點上升 freezing point depression 凝固點下降

For nonelectrolytes :

低濃度(<1M) deviations 小於 few percent 高濃度 deviations 則較大

§ Vapor pressure lowering

The vapor pressure of water over the solution is less than that of pure water.

$$\begin{split} P_1 &= X_1 P_1^{\,\circ} \\ P_1 &: \text{vapor pressure of solvent over the solution} \\ P_1^{\,\circ} &: \text{at same } T \text{ , vapor pressure of pure solvent} \\ X_1 &: \text{ mole fraction of solvent} \end{split}$$

$\Delta \mathbf{P} = (1 - \mathbf{X}_1) \mathbf{P}_1^{\circ}$	ΔP : vapor lowering
$= X_2 P_1^{\circ}$	X_2 : mole fraction of solute

Ex10-6: A solution contains 82.0 g of glucose, $C_6H_{12}O_6$ (MM=180.16g/mol), in 322 g of water. Calculate the vapor pressure lowering at 25°C (vapor pressure of pure water, P°_{H2O} = 23.76 mmHg)

Ans:

$$\Delta P = X_2 P_1^{\circ}$$

$$n_{C_6 H_{12} O_6} = \frac{82.0}{180.16} = 0.455 mol$$

$$n_{H_2 O} = \frac{322}{18.02} = 17.9 mol$$

$$X_{C_6 H_{12} O_6} = \frac{0.455}{17.9 + 0.455} = 0.0248$$

$$\Delta P = X_{C_6 H_{12} O_6} P^0_{H_2 O}$$

$$= 0.0248 \times 23.76$$

$$= 0.589 \text{ mmHg}$$

§ Boiling Point Elevation and Freezing Point Lowering

 $\Delta T_b=T_b-T_b^\circ$ $\Delta T_b=k_b \cdot m$ 沸點上升 水 $k_b=0.52^\circ C/m$ $\Delta T_f=T_f^\circ-T_f$ $\Delta T_f=k_f \cdot m$ 凝固點下降 如此 k_f 為"+"値 水 $k_f=1.86^\circ C/m$

Ex10-7: An anti freeze solution (抗凍劑) is prepared containing 50.0 cm³ of ethylene glycol, $C_2H_6O_2$ (MM = 62.07 g/mol, d = 1.12 g/mL), in 50.0g of water. Calculate the freezing point of this 50-50 volume ratio mixture.

$$m_{C_2H_4O_2} = 50.0 \times 1.12 = 56.0g$$

$$n_{C_{2}H_{6}O_{2}} = \frac{56.0}{62.07} = 0.902 mol$$

$$m = \frac{\text{ff molb}}{\text{fl kgb}} = \frac{0.902}{50.0/1000} = 18.0 \text{m}$$

$$\Delta T_{f} = k_{f} \cdot \text{m}$$

$$= 1.86 \cdot 18.0 = 33.5^{\circ}\text{C}$$

$$T_{f} = T^{\circ}_{f} - \Delta T_{f}$$

$$= 0-33.5$$

$$= -33.5^{\circ}\text{C}$$

§Osmotic Pressure 滲透壓

滲透壓:濃度低的向濃度高的滲透 $p = \frac{nRT}{V} = M \times RT$

- Ex: 0.10M solution at 25°C \overrightarrow{r} $\overrightarrow{>}$ Osmotic Pressure $\pi = M \cdot R \cdot T$ $= 0.10 \cdot 0.0821 \cdot (25+273) = 2.4$ atm
- Ex 10-8: Calculate the osmotic pressure at 15° C of a solution prepared by dissolving 50.0g of sugar, $C_{12}H_{22}O_{11}$, in enough water to form one liter of solution

$$MM=12.01 \times 12+1.008 \times 22+16.00 \times 11=342.3 \text{ g/mol}$$

$$n = \frac{50.0}{342.3} = 0.146 \text{mol}$$

$$M = \frac{\underline{\Im} \underline{\Im} \underline{\Pi} \underline{\Im}}{\underline{\hslash} \underline{L} \underline{\Im}} = \frac{0.146}{1} = 0.146M$$

$$\pi = M \cdot R \cdot T$$

$$= 0.146 \cdot 0.0821 \cdot (15+273)$$

$$= 3.45 \text{ atm}$$

§ Determination of Molar Masses from Colligative Properties

- Ex10-9: A laboratory experiment on colligative properties directs students to determine the molar mass of an unknown solid. Each student receives 1.00 g of solute, 225 mL of solvent and information that may be pertinent to the unknown.
 - (a) Student A determines the freezing point of her solution to be 6.18° C. She is told that her solvent is cyclohexane, which has density 0.779 g/mL, freezing point 6.50°C and $k_f = 20.2^{\circ}$ C/m.
 - (b) Student B determines the osmotic pressure of his solution to be 0.846 atm at 25℃. He is told that his solvent is water (d= 1.00 b/mL) and that the density of the solution is also 1.00 g/mL.

Ans :

(a)
$$\Delta T_{f} = T_{f}^{0} - T_{f} = 6.50 - 6.18 = 0.32^{\circ}C$$

 $\Delta T_{f} = m \times k_{f}$
 $m = \frac{\Delta T_{f}}{k_{f}} = \frac{0.32}{20.2} = 0.016 \text{ m} = \frac{moles \text{ solute}}{kg \text{ solvent}}$
 $m_{solvent} = 225 \text{ mL} \times \frac{0.779 \text{ g}}{mL} = 175 \text{ g} = 0.175 \text{ kg}$
 $n_{solute} = m \times \text{kg solvent} = 0.016 \times 0.175 = 2.8 \times 10^{-3} \text{ mol}$
 $MM_{solute} = \frac{1.00}{2.8 \times 10^{-3}} = 357 = 3.6 \times 10^{2} \text{ g/mol}$
(b) $p = MRT$
 $M = \frac{p}{RT} = \frac{0.846}{0.0821 \times 298} = 0.0346 \text{ mol/L} = \frac{moles \text{ solute}}{L \text{ solution}}$
 $m_{solution} = 1 + 225 = 226 \text{ g}$
 $V_{solution} = \frac{226 \text{ g}}{1.00 \text{ g/mL}} = 226 \text{ mL} = 0.226 \text{ L}$
 $n_{solute} = M_{solute} \times V_{solution} = 0.0346 \times 0.226 = 7.82 \times 10^{-3} \text{ mol}$
 $MM = \frac{m}{n} = \frac{1.00}{7.82 \times 10^{-3}} = 128 \text{ g/mol}$

Osmotic Pressure 測得之數値較大;較 $\Delta T_b \cdot \Delta T_f$ 易得準確之結果 ↓ Q値一般太小 例:0.0010M 水溶液; $\pi = 0.024$ atm = 18mmHg $\Delta T_f = 1.86 \times 10^{-3}$ ℃ $\Delta T_b = 5.2 \times 10^{-4}$ ℃

§ Colligative Properties of electrolytes

An electrolyte should have a greater effect on Colligative Properties than those of a nonelectrolytes.

One mole glucose dissolves in water , one mole of solute molecules is obtained.

One mole NaCl dissolves in water , two mole of solute ions is obtained. One mole CaCl₂ dissolves in water , three mole of solute ions is obtained.

 $\begin{array}{c|c} 1.0M \mbox{ solution of glucose } & \mbox{ NaCl and } CaCl_2 \mbox{ at } 25^\circ C \\ & Glucose & NaCl & CaCl_2 \\ \Delta P & 0.42mmHg & 0.77mmHg & 1.3mmHg \\ \end{array}$

$$\begin{split} \Delta T_{f} &= i \times k_{f} \cdot m \\ \Delta T_{b} &= i \times k_{b} \cdot m \\ \pi &= i \times M \cdot RT \\ i \vdots \text{ the number of moles of ions formed per mole of electrolyte} \end{split}$$

Ex10-10: Estimate the freezing points of 0.20m water solutions of a). KNO₃ b). Cr(NO₃)₃

a) KNO_{3(s)}
$$\xrightarrow{H_2O} K^+{}_{(eq)} + NO_3^-{}_{(eq)}$$

 $i = 2$
 $\Delta T_f = 2 \times k_f \cdot m$
 $= 2 \cdot 1.86 \cdot 0.20 = 0.74$
 $T_f = T_f^\circ - \Delta T_f = 0 - 0.74 = -0.74^\circ C$
b) $Cr(NO_3)_3 \xrightarrow{H_2O} Cr^{3+}{}_{(eq)} + 3NO_3^-{}_{(eq)}$
 $i = 4$
 $\Delta T_f = 4 \times k_f \cdot m$

$$\Delta T_{f} = 4 \times k_{f} \cdot m$$

= 4 \cdot 1.86 \cdot 0.20 = 1.5°C
$$T_{f} = -1.5°C$$

TABLE 10.3	Freezing Point Lowerings of Solutions					
	∆Tf Observed (°C)			i (Calc from $\Delta T_{\rm f}$)		
Molality	NaCl	-	MgSO ₄	NaCl	MgSO4	
0.00500	0.0182		0.0160	1.96	1.72	
0.0100	0.0360		0.0285	1.94	1.53	
0.0200	0.0714		0.0534	1.92	1.44	
0.0500	0.176		0.121	1.89	1.30	
0.100	0.348		0.225	1.87	1.21	
0.200	0.685		0.418	1.84	1.12	
0.500	1.68		0.995	1.81	1.07	

i 值只有在稀薄溶液中,其值接近於理論值

m↑→ i↓

其理由為:

- 1. 靜電吸引力,濃度高時離子完全分離之效果較差
- 2. 正、負離子生成離子對而非獨立之陽離子、陰離子
- Ex10-11: The freezing point of a 0.5m solution of oxalic acid, $H_2C_2O_4$, in water is -1.12°C. Which of the following equations best represents what happen when oxalic acid dissolves in water ?

a)
$$H_2C_2O_{4(s)} \to H_2C_2O_{4(eq)}$$
 $i = 1$

- b) $H_2C_2O_{4(s)} \to H^+_{(eq)} + HC_2O_4^-_{(eq)}$ i = 2
- c) $H_2C_2O_{4(s)} \rightarrow 2H^+(eq) + C_2O_4^{2-}(eq)$ i = 3

Ans:

$$\Delta T_f = T_f^\circ - T_f$$

= 0-(-1.12) = 1.12°C
 $\Delta T_f = i × k_f · m$
1.12 = i · 1.86 · 0.5
i = 1.2 →較接近 1 ∴ a.

i 值與解離度成正比.