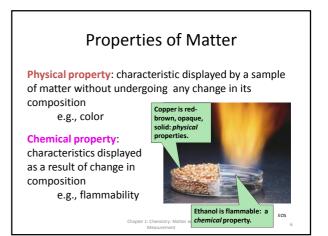
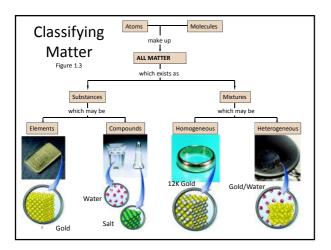

General Chemistry: An Integrated Approach Hill, Petrucci, 4th Edition Chapter 1 Chemistry:

Matter and Measurement

Mark P. Heitz State University of New York at Brockport © 2005, Prentice Hall, Inc.



Key Terms Atoms are the smallest distinctive units in a sample of matter. Molecules are larger units in which two or more atoms are joined together. Examples: Water consists of molecules, each having two atoms of hydrogen and one of oxygen. Oxygen gas consists of molecules, each having two atoms of oxygen.


Oxygen molecule

Physical and Chemical ChangesPhysical Change: changes in appearance but not in
composition.e.g., sublimation of ice in the winterChemical Change: changes resulting in altered
composition and/or molecular structure
e.g., spoilage of foods

	Physical Properties
Property	Example
Qualitative	
Color	Sulfur is vellow:
Odor	Hydrogen sulfide stinks.
Solubility	Table salt dissolves in water.
Hardness	Diamond is exceptionally hard.
Electrical conductivity	Copper conducts electricity.
Quantitative	
Mass	A nickel has a mass of 5 grams.
Temperature	Water for the bath is at 40° °C.
Melting point	Lead melts at 327.5 °C.
Density	At 20 °C, water has a density of 0.998 grams per milliliter.
	Chemical Properties
Substance	Typical Chemical Property
Iron	Rusts (combines with oxygen to form iron oxide)
Carbon	Undergoes combustion (combines with oxygen to form carbon dioxide)
Silver	Tarnishes (combines with sulfur to form silver sulfide)
Sodium	Reacts violently with water to form hydrogen gas and a
	solution of sodium hydroxide.
Nitroglycerin	Explodes (decomposes, when detonated, to a mixture of gases)
	Chapter 1: Chemistry: Matter and
	Measurement

Matter Classifications ...

hich r

• Substance – type of matter with fixed composition that does NOT vary from sample to sample

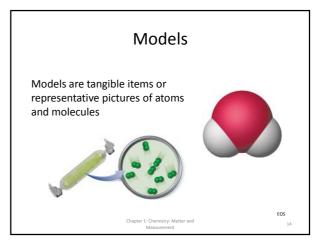
- Element substance that cannot be broken down
- **Compound** substance made up of atoms of two or more elements, with the different kinds of atoms combined in fixed proportions

Chapter 1: Chemistry: Matter and Measurement

<text><list-item><list-item><list-item>

Chemical Symbols			
A one- or two-lettered designation derived from the name of the element			
Most symbols are based on English names:			
Hydrogen = H Neon = Ne Chromium = Cr			
Note that the first letter is always capitalized and the second is lowercase			
Chapter 1: Chemistry: Matter and 12			

Scientific Methods


- A hypothesis is a *tentative* explanation or prediction concerning some phenomenon

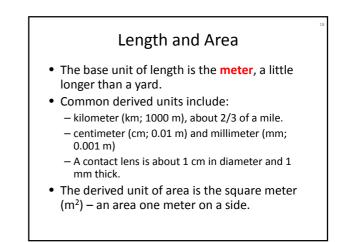
 Tested via experiments
- A **theory** provides explanations of observed natural phenomena and predictions that can be tested by further experiments

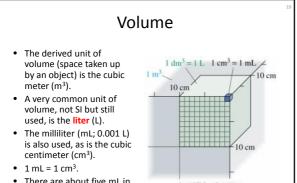
EOS

15

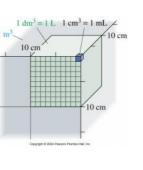
 A scientific law is a summary of observed patterns in large collections of data, often expressed mathematically (model).

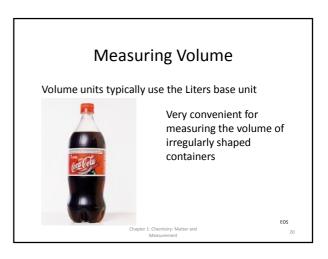
<text><text><text><text>

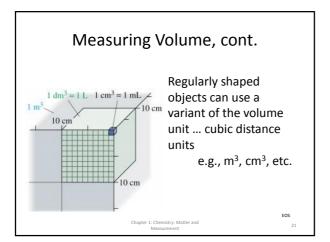

hapter 1: Chemistry: Matter ar Measurement

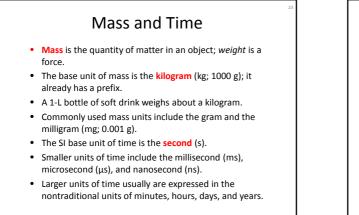

Scientific Measurements and Units

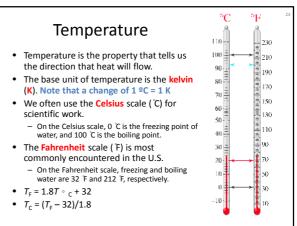
Scientists worldwide use common measurement units called the International System of Units (SI)

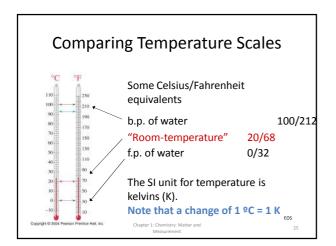

Physical Quantity	Name of Unit	Symbol of Unit
Length	Meter*	m
Mass	Kilogram	kg
Time	Second	s
Temperature	Kelvin	K
Amount of substance	Mole	mol
Electric current	Ampere	A
Luminous intensity	Candela	cd

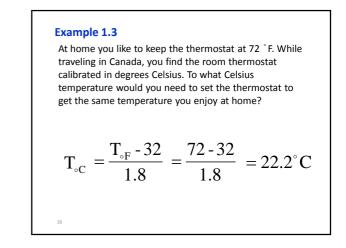

Multiple	Prefix	Examples:
$\begin{array}{c} 10^{12} \\ 10^9 \\ 10^6 \\ 10^3 \\ 10^2 \\ 10^{-1} \\ 10^{-2} \\ 10^{-3} \\ 10^{-6} \\ 10^{-9} \\ 10^{-12} \end{array}$	tera (T) giga (G) mega (M) kilo (k) hecto (h) deca (da) deci (d) centi (c) milli (m) micro (µ)* nano (n) pico (p)	Gigahertz (GHz) Megabytes (MB) Terawatts (TW)



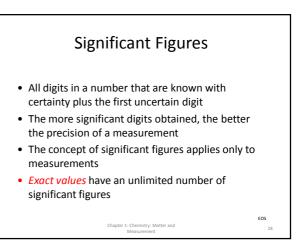

There are about five mL in one teaspoon.

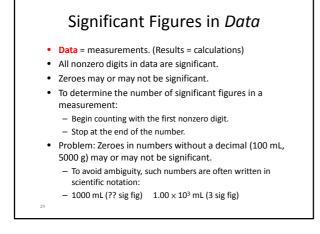






Example 1.1 Convert the unit of each o measurements to a unit th ten by a prefix.	0
(a) 9.56 × 10 ^{−3} m	(b) 1.07×10^3 g
Example 1.2 Use exponential notation following measurements i (a) 1.42 cm	•
22	





Rules for Zeros in Significant Figures

Zeros at the end of a number are significant if they are to the *right* of the decimal point e.g., 0.1002300 1023.00

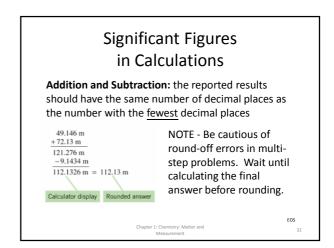
Zeros at the end of a number may or may not be significant if the number is written *without* a decimal point

Chapter 1: Chemistry: Matter and Measurement

e.g., 1000. compared to 1000

EOS

30


Significant Figures in Calculations

Multiplication and Division: the reported results should have no more significant figures than the factor with the fewest significant figures

1.827 m × 0.762 m = ?

0.762 has 3 sigfigs so the reported answer is 1.39 m²

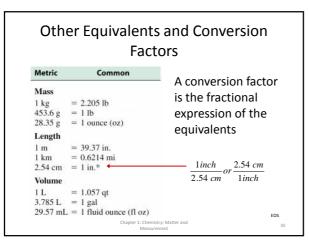
Chapter 1: Chemistry: Matt

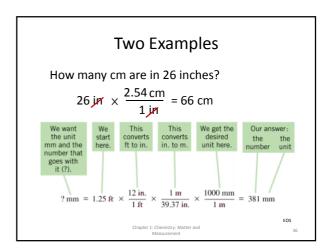
Example 1.4

Calculate the area, in square meters, of the poster board whose dimensions are given in Table 1.5. Report the correct number of significant figures in your answer.

Example 1.5

For a laboratory experiment, a teacher wants to divide all of a 453.6-g sample of sulfur equally among the 21 members of her class. How many grams of sulfur should each student receive?


Example 1.6


Perform the following calculation, and round off the answer to the correct number of significant figures.

49.146 m + 72.13 m - 9.1434 m = ?

33

Density(密度)
Density is the ratio of mass per unit volume of a substance
$d = \frac{mass}{Volume} = \frac{m}{V}$ common units are $d = \frac{g}{cm^3} \text{ or } \frac{g}{mL} \text{ or } \frac{g}{L}$
EOS Chapter 1: Chemistry: Matter and Measurement 37