

The total mass remains constant during a chemical reaction．

Example：Decomposition of mercuric oxide (HgO)

$$
2 \mathrm{HgO}_{(\mathrm{s})}=2 \mathrm{Hg}_{(\mathrm{l})}+\mathrm{O}_{2(\mathrm{~g})}
$$

Prentice Hall © 2005		$\begin{gathered} \text { EOS } \\ 2 \\ \text { Chapter Two } \end{gathered}$
Prentice Hall © 2005		

Law of Definite Proportions （定比定律）

Low of constant composition（定組成定律）
All samples of a compound have the same composition；that is，all samples have the same proportions，by mass，of the elements present so he concluded that all the mass gained by the tree had come from the water．Explain and criticize his conclusion．

Example 2．1 A Conceptual Example

Jan Baptista van Helmont（1579－1644）first measured the mass of a young willow tree and，separately，the mass of a bucket of soil and then planted the tree in the bucket．After five years，he found that the tree had gained 75 kg in mass even though the soil had lost only 0.057 kg ．He had added only water to the bucket，and

Example 2.2

The mass ratio of oxygen to magnesium in the compound magnesium oxide is $0.6583: 1$ ．What mass of magnesium oxide will form when 2.000 g of magnesium is completely converted to magnesium oxide by burning in pure oxygen gas？

Law of Multiple Proportions倍比定律

When two or more different compounds of the same two elements are compared，the masses of one element that combine with the a fixed mass of the second element are in the ratio of small whole numbers．

Multiple proportions illustrated

Law of Multiple Proportions（contid）

－Four different oxides of nitrogen can be formed by combining 28 g of nitrogen with：
－ 16 g oxygen，forming Compound I
－ 48 g oxygen，forming Compound II
－ 64 g oxygen，forming Compound III
－ 80 g oxygen，forming Compound IV

```
What is the ratio 16：48：64：80 expressed as small whole numbers？
```

－Compounds I－IV are $\mathrm{N}_{2} \mathrm{O}, \mathrm{N}_{2} \mathrm{O}_{3}, \mathrm{~N}_{2} \mathrm{O}_{4}, \mathrm{~N}_{2} \mathrm{O}_{5}$

Proposed in 1803 to explain the law of conservation of mass，law of definite proportions，and law of multiple proportions．
－Matter is composed of atoms：tiny，indivisible particles．
－All atoms of a given element are the same．
－Atoms of one element differ from atoms of other elements．
－Compounds are formed when atoms of different elements unite in fixed proportions．
－A chemical reaction involves rearrangement of atoms． No atoms are created，destroyed，or broken apart．

Isotopes（同位素）

－Atoms that have the same number of protons but different numbers of neutrons are called isotopes．
－The atomic number（原子序）（ Z ）is the number of protons in the nucleus of a given atom of a given element．
－The mass number（質量數）(A) is an integral number that is the sum of the numbers of protons and neutrons in an atom．
－The number of neutrons $=A-Z$ ．

Other Examples of Isotopes

		$\begin{aligned} & \text { EOS } \\ & 16 \end{aligned}$
Prentice Hall © 2005		Chapter Two

Example 2.3

How many protons，neutrons，and electrons are present in a ${ }^{81} \mathrm{Br}$ atom？ symbol and the mass number (A) and atomic number（ Z ）：

$$
\begin{array}{lll}
{ }_{Z}^{A} \mathrm{E} & { }_{17}^{35} \mathrm{Cl} & { }_{17}^{37} \mathrm{Cl}
\end{array}
$$

－How many protons are in chlorine－35？
－How many protons are in chlorine－37？
－How many neutrons are in chlorine－37？

Atomic Mass

－Atoms are very tiny，so a tiny unit is needed to express the mass of an atom or molecule．
－One atomic mass unit（u or a．m．u．）$=1 / 12$ the mass of a C－12 atom．
－ $1 \mathrm{u}=1.66054 \times 10^{-24} \mathrm{~g}$
－The atomic mass of an element is the weighted average of the masses of the naturally occurring isotopes of that element

Isotope	Percent Abundance	Fractional Abundance
Carbon－12	98.892%	0.98892
Carbon－13	1.108%	0.01108

Example 2.4

Use the data cited above to determine the weighted average atomic mass of carbon．

Example 2．5 An Estimation Example

Indium has two naturally occurring isotopes and a weighted average atomic mass of 114.82 u ．One of the isotopes has a mass of 112.9043 u ．Which is likely to be the second isotope：${ }^{111} \mathrm{I} \mathrm{I},{ }^{12} \mathrm{I} \mathrm{I},{ }^{114} \mathrm{I}$ ，or ${ }^{115} \mathrm{I} \mathrm{n}$ ？

2．5 The Periodic Table：Elements Organized

Mendeleev＇s Periodic Table

－Mendeleev arranged the known elements in order of increasing atomic weight from left to right and from top to bottom in groups．
－Elements that closely resembled one another were arranged in the same vertical group．
－Gaps were left where undiscovered elements should appear．
－From the locations of the gaps，he was able to predict properties of some of the undiscovered elements．

2．6 Molecules and Molecular Compounds

Molecular Compounds

Ball－and－stick model vs．Space－ filling model
S_{8} ，a polyatomic molecule

Introduction to Compounds

A molecule is a group of two or more atoms held together by covalent bonds．

Molecules and Formulas ${ }^{30}$
－A molecule is a group of two or more atoms held together by covalent bonds（共價鍵）．
－A molecular formula（分子式）gives the number of each kind of atom in a molecule．
－An empirical formula（實驗式）simply gives the（whole number）ratio of atoms of elements in a compound．

Compound	Molecular formula	Empirical formula
Hydrogen peroxide	$\mathrm{H}_{2} \mathrm{O}_{2}$	HO
Octane	$\mathrm{C}_{8} \mathrm{H}_{18}$	$? ? ? ?$

Prentice Hall © 2005
Chapter Two

Empirical and Molecular Formulas

Empirical formula: the simplest whole number ratio of elements in a compound

Example:
Molecular formula of glucose $-\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$

The elemental ratio $\mathrm{C}: \mathrm{H}: \mathrm{O}$ is $1: 2: 1$, so the empirical formula is $\mathrm{CH}_{2} \mathrm{O}$

Structural Formulas

Shows how atoms are attached to one another.

Ammonia $\left(\mathrm{NH}_{3}\right)$
Methane $\left(\mathrm{CH}_{4}\right)$

Acetic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$

General Chemisty 4^ ${ }^{\text {a cdition. Hill. Petrucci. McCreary. Perry }}$
ery
EOS
32
Prentice Hall © 2005 ${ }_{\text {Chapter Two }}^{32}$

Binary Molecular Compounds

Compounds that are typically comprised of two nonmetallic elements:
e.g., CO, NO, HF

Molecular formulas are usually written with the more "metallic" first - "metallic" means farther left in the period and lower in the group

Prentice Hall © 2005	General Chemistry 4 edition, Hill. Petrucei. McCreary. Pery	Chapter Two

Naming Binary Molecular Compounds

- The name consists of two words.
- First word: name of the element that appears first in the formula.
- Second word: stem of the name of the second element, ending with -ide.
- Names are further modified by adding prefixes to denote the numbers of atoms of each element in the molecule.

Names of Binary Compounds

Consider the compounds CO and CO_{2}
The compound name consists of two words, one for each element in the compound
Name the element that appears first in the formula: CARBON

The second element has an altered name: retain the stem of the element name and replace the ending by -ide

```
O OXIDEYYGEN
```

However, both compounds cannot be carbon oxide

Names of Binary Compounds

Consider the compounds CO and CO_{2}
The names are further modified by adding prefixes
to denote the numbers of atoms

Example 2.6

Write the molecular formula and name of a compound for which each molecule contains six oxygen atoms and four phosphorus atoms.
$\mathrm{P}_{4} \mathrm{O}_{6}$:Tetraphosphorus hexoxide.

2.7 Ions and Ionic Compounds

Example 2.7

Write (a) the molecular formula of phosphorus pentachloride and (b) the name of $\mathrm{S}_{2} \mathrm{~F}_{10}$.
(a) PCl_{5}
(b) Disulfur decafluoride.

Ions and Ionic Compounds

Atoms that gain or lose electrons are called ions
There is no change in the number of protons or neutrons in the nucleus of the atom.

Positive ions: CATIONS Negative ions: ANIONS

Atoms that lose electrons form cations
$\mathrm{Na} \rightarrow \mathbf{N a}^{+}+\mathrm{e}^{-}$
Atoms that gain electrons form anions

$$
\mathrm{Cl}+\mathrm{e}^{-} \rightarrow \mathrm{Cl}^{-}
$$

Monatomic lons

- Group IA metals form ions of $1+$ charge.
- Group IIA metals form ions of $2+$ charge.
- Aluminum, a group IIIA metal, forms ions with a 3+ charge.
- Nonmetal ions of groups V, VI, and VII usually have charges of $3-, 2-$, and $1-$, respectively.
- Group B metal ions (transition metal ions) often have more than one possible charge. A Roman numeral is used to indicate the actual charge.
- A few transition elements have only one common ion (Ag , Zn, Cd), and a Roman numeral is not often used.

Names and Formulas for Ionic Compounds

Ionic compounds form when oppositely charged ions are attracted to each other

NaCl

Resulting compound is electrically neutral
$\mathrm{Na}^{+} \quad \mathrm{Cl}^{-}$
$(+1)+(-1)=0$
Ionic compound names use the cation
 name followed by the anion name

lons and lonic Compounds (contid)

In an ionic compound, oppositely charged ions are attracted to each other such that the compound has no net charge.

Example 2.8
Determine the formula for (a) calcium chloride and (b) magnesium oxide.
(a) CaCl_{2}
(b) MgO

Example 2.9
What are the names of (a) MgS and (b) CrCl_{3} ?
(a) Magnesium sulfide
(b) Chromium(III) chloride

Polyatomic lons

bonded atoms.

- There are many more polyatomic anions than there are polyatomic cations.
- You should (eventually!) commit to memory much of Table 2.4
- hypo- and per- are sometimes seen as prefixes in oxygen-containing polyatomic ions (oxoanions).
- -ite and -ate are commonly found as suffixes in oxygen-containing polyatomic ions.

Example 2.10
Write the formula for (a) sodium sulfite and (b) ammonium sulfate.
(a) $\mathrm{Na}_{2} \mathrm{SO}_{3}$
(b) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$

Example 2.11
What is the name of (a) NaCN and (b) $\mathrm{Mg}\left(\mathrm{ClO}_{4}\right)_{2}$?
(a) Sodium cyanide.
(b) Magnesium perchlorate.

Hydrates

- A hydrate is an ionic compound in which the formula unit includes a fixed number of water molecules associated with cations and anions.
- To name a hydrate, the compound name is followed by "__hydrate" where the blank is a prefix to indicate the number of water molecules.
- The number of water molecules associated with each formula unit is written as an appendage to the formula unit name separated by a dot.
- Examples: $\mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O} ; \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$

Hydrates

A hydrate is an ionic compound in which the formula unit includes a fixed number of water molecules associated with cations and anions

2.8 Acids, Bases, and Salts

Acids

- Taste sour, if diluted with enough water to be tasted safely.
- May produce a pricking or stinging sensation on the skin.
- Turn the color of litmus or indicator paper from blue to red.
- React with many metals to produce ionic compounds and hydrogen gas.
- Also react with bases, thus losing their acidic properties.

Acids and Bases: The Arrhenius Concept

- There are several definitions which may be used to describe acids and bases.
- An Arrhenius acid is a compound that ionizes in water to form a solution of H^{+}ions and anions.
- An Arrhenius base is a compound that ionizes in water to form solutions of OH^{-}and cations.
- Neutralization is the process of an acid reacting with a base to form water and a salt.
- A salt is the combination of the cation from a base and the anion from an acid.

rentice Hall © 2005
 Chapter Two

Acid Nomenclature

- Notice that the acid name is related to the anion name.
- Hydrochloric acid (HCl), chloride ion $\left(\mathrm{Cl}^{-}\right)$
- Hydrosulfuric acid ($\mathrm{H}_{2} \mathrm{~S}$), sulfide ion $\left(\mathrm{S}^{-2}\right)$
- Phosphoric acid $\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right)$, phosphate ion $\left(\mathrm{PO}_{4}{ }^{-3}\right)$
- Nitric acid $\left(\mathrm{HNO}_{3}\right)$, nitrate ion $\left(\mathrm{NO}_{3}{ }^{-}\right)$
- Nitrous acid $\left(\mathrm{HNO}_{2}\right)$, nitrite ion $\left(\mathrm{NO}_{2}^{-}\right)$

