

Substance	Formula	Typical Use(s)	
Acetylene	C ₂ H ₂	Fuel for welding metals	
Ammonia	NH ₃	Fertilizer, manufacture of plastics	
Argon	Ar	Filling gas for specialized lightbulbs	
Butane	C ₄ H ₁₀	Fuel for heating (LPG)	
Carbon dioxide	CO ₂	Beverage carbonation	
Carbon monoxide	CO	Reducing agent in metallurgy	
Chlorine	Cl ₂	Disinfectant, bleach	
Ethylene	C ₂ H ₄	Manufacture of plastics	
Helium	He	Lifting gas for balloons	
Hydrogen	H_{2}	Chemical reagent, fuel for fuel cells	
Hydrogen sulfide	H_2S	Chemical reagent	
Methane	CH ₄	Fuel, manufacture of hydrogen	
Nitrogen	N2	Manufacture of ammonia	
Nitrous oxide	N ₂ O	Anesthetic	
Oxygen	O2	Support of combustion, respiration	
Propane	C_3H_8	Fuel for heating (LPG)	
Sulfur dioxide	SO_2	Preservative, disinfectant, bleach	
All of these substances are gas ressure, but they can be conve	es at room temperature (a rted to liquids and solids Gaussian © 2004 F	hout 25 °C) and at pressures comparable to atmospheric by cooling or an increase in pressure. Yangon Prierites Hall, Inc.	

	Table 5.2 The Standard Atmosphere of Pressure in Different Units	9
	1 atm = 760 mmHg 760 Torr 1.01325 bar	
	1013.25 mb 14.696 lb/in. ²	
	101,325 N/m ² 101,325 Pa	
Prentice Hall © 2005	101.325 kPa Copyright © 2034 Peason Prentipe Hall, Inc.	- Chapter Five

Example 5.4 A helium-filled par level, where the a Assuming that the be the volume of 1 resort at an altitud pressure is 557 Te	ty balloon ha tmospheric p temperature he balloon w le of 2500 m prr?	as a volume of pressure is 748 e remains cons /hen it is taken , where the atr	4.50 L at sea 3 Torr. stant, what wi 1 to a mountai nospheric	21 a iII in
Example 5.5:	An Estimat	tion Exampl	е	
A gas is enclosed volume of the gas to increase the ga following is a reas the greater pressu	in a cylinder is 2.00 L at s pressure to onable value ire?	fitted with a p 398 Torr. The 5 5.15 atm. Wh for the volum	iston. The piston is mov nich of the e of the gas a	red at
0.20 L	0.40 L	1.00 L	16.0 L	
Prentice Hall © 2005	General Chemistry 4th editio	on, Hill, Petrucci, McCreary, Perry	Cha	pter Five

	s	
Table 5.3 Units for the C R has the value	Gas Constant, R When	
$0.082058 \text{ L} \text{ atm mol}^{-1} \text{ K}^{-1}$	<i>P</i> is in atm	
$62.364 \text{ L Torr mol}^{-1} \text{ K}^{-1}$	P is in torr	
8.3145 J mol ⁻¹ K ⁻¹	<i>P</i> is in Pa; <i>V</i> is in m^3	
Copyright @ 2004 Pearso	n Prentice Hall, Inc.	

- When gases measured at the same temperature and pressure are allowed to react, the volumes of gaseous reactants and products are in small whole-number ratios.
- Example: At a given temperature and pressure, $2.00\ L$ of H_2 will react with $1.00\ L$ of O_2 (Why 2:1? Balance the equation ...)
- Example: At a given temperature and pressure, $6.00\ L$ of H_2 of will react with 2.00 L of N_2 to form 4.00 L of NH_3 (Why 6:2:4? Balance the equation ...)
- We don't need to know *actual* conditions for the reaction ... as long as the *same* conditions apply to all the gases.

Prentice Hall © 2005

Chapter Five

General Chemistry 4th edition, Hill, Petrucci, McCreary, Perry

Chapter Fiv

Prentice Hall @ 2005

The Kinetic-Molecular Theory and Temperature

59

From the previous equation we can derive the following:

$$e_{\rm k} = \frac{3}{2} \cdot \frac{R}{N_{\rm A}} \cdot T$$

where

R = ideal gas constant (a constant) N_A = Avogadro's number (a constant), therefore:

$e_{k} = (\text{constant}) \cdot T$

The average translational kinetic energy of the molecules of a gas is directly proportional to the Kelvin temperature.

Example 5.23

If compared under the same conditions, how much faster than helium does hydrogen effuse through a tiny hole?

Example 5.24

One percent of a measured amount of Ar(g) escapes through a tiny hole in 77.3 s. One percent of the same amount of an unknown gas escapes under the same conditions in 97.6 s. Calculate the molar mass of the unknown gas.

Prentice Hall © 2005

66

