
5.1 Gases: What Are They Like:

Gases: What Are They Like?

Composed of widely separated particles in constant, random motion.
Flow readily and occupy the entire volume of their container

Vapor is the term used to denote the gaseous state of a substance existing more commonly as a liquid e.g., water is a vapor, oxygen is a gas Many low molar mass molecular compounds are gases - methane $\left(\mathrm{CH}_{4}\right)$, carbon monoxide (CO)

Prentice Hall © 2005	Chapter 5: Gases	3

Table 5.1 Some Common Gases ${ }^{\text {a }}$		
Substance	Formula	Typical Use(s)
Acetylene	$\mathrm{C}_{2} \mathrm{H}_{2}$	Fuel for welding metals
Ammonia	NH_{3}	Ferrilizer, manufacture of plastics
Argon	Ar	Filling gas for specialized lightbulbs
Butane	$\mathrm{C}_{4} \mathrm{H}_{10}$	Fuel for heating (LPG)
Carbon dioxide	CO_{2}	Beverage carbonation
Carbon monoxide	CO	Reducing agent in metallurgy
Chlorine	Cl_{2}	Disinfectant, bleach
Ethylene	$\mathrm{C}_{2} \mathrm{H}_{4}$	Manufacture of plastics
Heliurn	He	Liflites gas for balluens
Hydrogen	H_{3}	Chemical reavent, fuel fur inel cells
Hydrogen sulfide	$\mathrm{H}_{2} \mathrm{~S}$	Chemical reagent
Mechane	CH_{4}	Fucl, manuracture nf hydrogen
Nitmen	N_{2}	Manufactue of ammenia
Nitrous oxide	$\mathrm{N}_{2} \mathrm{O}$	Anesthetic
Oxyen	O_{2}	Support of combustion, respiration
Propane	$\mathrm{C}_{2} \mathrm{H}_{4}$	Fvel for heuting (LPGi)
Sullir dioxide	SO_{2}	Preservative, disintectant, bleach
passure, bal they can be comernd to liquids and solids by cowlan or an ixerase in pressur. 		
Prentice Hall © 2005	GeneralChemisty 4 th	Petrucci, McCcrary, Perry \quad Chapter Five

An Introduction to Kinetic-Molecular Theory

- Provides a model for gases at the microscopic level.
- Molecules are in rapid, random motion.
- Movement of gases through three-dimensional space is called translational motion.

[^0]- Temperature: related to average speed of gas molecules.

Table 5.2 The Standard Atmosphere of Pressure in Different Units

Gas Pressure

- Pressure is the force per unit area.
- In SI, force is expressed in newtons (N) and area in square meters (m^{2}).
- The unit of pressure in SI is the pascal (Pa) with the units $\mathrm{N} / \mathrm{m}^{2}$.
- Kilopascals (kPa) are often used instead since the pascal is such a small unit.
- The atmosphere and $\mathbf{m m H g}$ (Torr) are the most common scientific units for pressure.
- Converting from one unit to another simply requires the appropriate conversion factor(s).

Barometers

- Used to measure atmospheric pressure.
- One atmosphere (atm): pressure exerted by a column of mercury exactly 760 mm high.
- One millimeter of mercury is called a Torr.

$$
\begin{aligned}
1 \mathrm{~atm} & =760 \mathrm{mmHg} \\
& =760 \mathrm{Torr} \\
& =101.325 \mathrm{kPa}
\end{aligned}
$$

Prentice Hall © 2005

A Mercury Barometer

(a)

Manometers

- A manometer is used to measure the pressure of a sample of gas.
- Pressure is measured using the difference in the heights of mercury (or other liquid) in the two arms of the manometer.

A Closed-End Manometer

Example 5.2

Calculate the height of a column of water ($d=$ $1.00 \mathrm{~g} / \mathrm{cm}^{3}$) that exerts the same pressure as a column of mercury $\left(d=13.6 \mathrm{~g} / \mathrm{cm}^{3}\right) 760 \mathrm{~mm}$ high.

Example 5.3: A Conceptual Example

Without doing calculations, arrange the drawings in Figure 5.5 so that the pressures denoted in red are in increasing order.

5.4 Bolye's Law: The PressureVolume Relationship

Boyle＇s Law：
 Pressure－Volume Relationship

－For a fixed amount of a gas at constant temperature， the volume of the gas varies inversely with its pressure．
－For a fixed amount of a gas at constant temperature， the product of pressure and volume is a constant．

$$
\begin{gathered}
P V=\text { constant or } \quad P_{\text {initial }} V_{\text {initial }}=P_{\text {final }} V_{\text {final }} \\
P_{1} V_{I}=P_{2} V_{2}
\end{gathered}
$$

Graphical Representation of Boyle＇s Law

Example 5．5：An Estimation Example

A gas is enclosed in a cylinder fitted with a piston．The volume of the gas is 2.00 L at 398 Torr．The piston is moved to increase the gas pressure to 5.15 atm ．Which of the following is a reasonable value for the volume of the gas at the greater pressure？

$$
\begin{array}{llll}
0.20 \mathrm{~L} & 0.40 \mathrm{~L} & 1.00 \mathrm{~L} & 16.0 \mathrm{~L}
\end{array}
$$

Example 5.4
A helium－filled party balloon has a volume of 4.50 L at sea level，where the atmospheric pressure is 748 Torr．
Assuming that the temperature remains constant，what will be the volume of the balloon when it is taken to a mountain resort at an altitude of 2500 m ，where the atmospheric pressure is 557 Torr？

5．5 Charles＇s Law：The Temperature－ Volume Relationship

Charles＇s Law：

 Temperature－Volume Relationship－The volume of a fixed amount of a gas at constant pressure is directly proportional to its Kelvin （absolute）temperature．
－$V \propto T$ or $V=b T$
－Absolute zero（絕對零度）is the temperature obtained by extrapolation to zero volume．
－Absolute zero on the Kelvin scale $=-273.15{ }^{\circ} \mathrm{C}$

Example 5.6

A balloon indoors, where the temperature is $27^{\circ} \mathrm{C}$, has a volume of 2.00 L . What will its volume be outdoors, where the temperature is $-23^{\circ} \mathrm{C}$? (Assume no change in the gas pressure.)

Example 5.7: An Estimation Example

A sample of nitrogen gas occupies a volume of 2.50 L at $-120{ }^{\circ} \mathrm{C}$ and 1.00 atm pressure. To which of the following approximate temperatures should the gas be heated in order to double its volume while maintaining a constant pressure?

$$
30^{\circ} \mathrm{C} \quad-12^{\circ} \mathrm{C} \quad-60^{\circ} \mathrm{C} \quad-240^{\circ} \mathrm{C}
$$

Prentice Hall © 2005

Chapter Five
At a fixed temperature and pressure, the volume of a gas is directly proportional to the amount of gas in moles (n) or to the number of molecules of gas.

$$
V \alpha n \quad \Rightarrow \quad V=c n \quad \Rightarrow \quad V / n=c
$$

- Standard temperature and pressure (STP) is equal to $0{ }^{\circ} \mathrm{C}$ and 1 atm .
- The molar volume of a gas is the volume occupied by one mole of the gas.
- At STP , molar volume of an ideal gas is 22.4 liters.

Prentice Hall © 2005
GeneralChemistry 4t edition. Hill. Perruci. Mcrcrary. Perry

5.7 The Combined Gas Law

Example 5.9
The flasks pictured in Figure 5.11 contain $\mathrm{O}_{2}(\mathrm{~g})$, the one on the left at STP and the one on the right at $100{ }^{\circ} \mathrm{C}$. What is the pressure at $100{ }^{\circ} \mathrm{C}$?

5.8 The Ideal Gas Law and Its Applications

Prentice Hall © 200 Chapter Five

The Ideal Gas Law

$$
\begin{aligned}
& \frac{P V}{n T}=\text { constant }=R \\
& \qquad \begin{array}{c}
R=0.08206(\mathbf{L} \cdot \mathrm{~atm}) /(\mathrm{mol} \cdot \mathrm{~K}) \\
\text { The ideal gas constant }
\end{array}
\end{aligned}
$$

$$
P V=n R T \quad \leftarrow \text { The ideal gas law }
$$

- P in atm, V in L, n in moles, T in kelvins.
- If any other units are used for these variables, a different value for R must be used ...

Example 5.10
What is the pressure exerted by $0.508 \mathrm{~mol} \mathrm{O}_{2}$ in a $15.0-\mathrm{L}$ container at 303 K ?

Example 5.11

What is the volume occupied by 16.0 g ethane gas $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)$ at 720 Torr and $18{ }^{\circ} \mathrm{C}$?

Applications of the Ideal Gas Law: Molecular Mass Determination
$M w=$ molar mass and $m=$ mass in grams

$M w=\frac{m \text { (grams) }}{n \text { (moles) }}$ so	$\boldsymbol{n}=\frac{m}{M w}$
The ideal gas equation rearranges to:	$\boldsymbol{n}=\frac{P V}{R T}$

Setting the equations equal to one another: $\frac{m}{M w}=\frac{P V}{R T}$

\ldots and solving for $M: \quad \boldsymbol{M} \boldsymbol{w}=\frac{\boldsymbol{m} \boldsymbol{R} \boldsymbol{T}}{\boldsymbol{P} \boldsymbol{V}} \quad$| Alternative to equation: (A) find |
| :---: |
| \boldsymbol{n} using the ideal gas equation; (B) |
| Divide \boldsymbol{m} (grams) by $n($ goles $)$ to
 get grams/mol. |

Prentice Hall © 2005

Applications of the Ideal Gas Law: Gas Densities

- Gases are much less dense than liquids and solids, so gas densities are usually reported in g / L.
$M w=\frac{m R T}{P V} \quad$ rearranges to $\quad \frac{m}{V}=\frac{M w P}{R T}$ Alternative: find
olume of one mole volume of one mole quantity of gas. Divide mass of that quantity by volume to find g / L. and density $=\frac{m}{V} \quad$ so $\quad \boldsymbol{d}=\frac{\boldsymbol{M} \boldsymbol{w} \boldsymbol{P}}{\boldsymbol{R} \boldsymbol{T}}$

Density of a gas is directly proportional to its molar mass and pressure, and is inversely proportional to Kelvin temperature.

Prentice Hall © $2005 \quad$ Chapter Five

Example 5.12
If 0.550 g of a gas occupies 0.200 L at 0.968 atm and 289 K , what is the molecular mass of the gas?

Example 5.13

Calculate the molecular mass of a liquid that, when vaporized at $100{ }^{\circ} \mathrm{C}$ and 755 Torr, yields 185 mL of vapor that has a mass of 0.523 g .

Example 5.14
Calculate the density of methane gas, CH_{4}, in grams per liter at $25{ }^{\circ} \mathrm{C}$ and 0.978 atm.

Example 5.15
Under what pressure must $\mathrm{O}_{2}(\mathrm{~g})$ be maintained at $25{ }^{\circ} \mathrm{C}$ to have a density of 1.50 g / L ?

Gases in Reaction Stoichiometry: The Law of Combining Volumes

- When gases measured at the same temperature and pressure are allowed to react, the volumes of gaseous reactants and products are in small whole-number ratios.
- Example: At a given temperature and pressure, 2.00 L of H_{2} will react with 1.00 L of O_{2} (Why 2:1? Balance the equation ...)
- Example: At a given temperature and pressure, 6.00 L of H_{2} of will react with 2.00 L of N_{2} to form 4.00 L of NH_{3} (Why 6:2:4? Balance the equation ...)
- We don't need to know actual conditions for the reaction ... as long as the same conditions apply to all the gases.

The Ideal Gas Equation in Reaction Stoichiometry

- We can use the law of combining volumes for stoichiometry only for gases and only if the gases are at the same temperature and pressure.
- Otherwise, we must use stoichiometric methods from Chapter 3 - combined with the ideal gas equation.

[^1]
Example 5.16

How many liters of $\mathrm{O}_{2}(\mathrm{~g})$ are consumed for every 10.0 L of $\mathrm{CO}_{2}(\mathrm{~g})$ produced in the combustion of liquid pentane, $\mathrm{C}_{5} \mathrm{H}_{12}$, if all volumes are measured at STP?

The Ideal Gas Equation in Reaction Stoichiometry

- As in other stoichiometry

Moles of substance A calculations, the problem centers around the mole ratio:

```
Remember this? From Chapter 3, Stoichiometry?
```

Moles of substance A $\times \frac{\text { mol B }}{\text { mol A }}$

- If \boldsymbol{A} is a gas, we find moles of \boldsymbol{A} first by using the ideal gas equation and P, V, and T.
- If \boldsymbol{B} is a gas, we solve for moles of $\boldsymbol{B}(n)$, then use the ideal gas equation to find P, V, or T.

Prentice Hall © 2005
Chapter Five

Example 5.17

In the chemical reaction used in automotive air-bag safety systems, $\mathrm{N}_{2}(\mathrm{~g})$ is produced by the decomposition of sodium azide, $\mathrm{NaN}_{3}(\mathrm{~s})$, at a somewhat elevated temperature:

$$
2 \mathrm{NaN}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{Na}(\mathrm{I})+3 \mathrm{~N}_{2}(\mathrm{~g})
$$

What volume of $\mathrm{N}_{2}(\mathrm{~g})$, measured at $25^{\circ} \mathrm{C}$ and 0.980 atm, is produced by the decomposition of $62.5 \mathrm{~g} \mathrm{NaN}_{3}$?
5.10 Mixtures of Gases: Dalton's Law of Partial Pressures

Mixtures of Gases： Dalton＇s Law of Partial Pressures

－Dalton＇s law of partial pressures is used in dealing with mixtures of gases．
－The total pressure exerted by a mixture of gases is equal to the sum of the partial pressures exerted by the separate gases：

$$
P_{\text {total }}=P_{1}+P_{2}+P_{3}+\cdots
$$

Partial pressure：the pressure a gas would exert if it were alone in the container．

$$
P_{1}=\frac{n_{1} R T}{V} \quad P_{2}=\frac{n_{2} R T}{V} \quad P_{3}=\frac{n_{3} R T}{V} \cdots
$$

Example 5.19

The main components of dry air，by volume，are N_{2} ， $78.08 \% ; \mathrm{O}_{2}, 20.95 \%$ ；Ar， 0.93% ；and $\mathrm{CO}_{2}, 0.04 \%$ ．What is the partial pressure of each gas in a sample of air at 1.000 atm？

Example 5．20：A Conceptual Example

Describe what must be done to change the gaseous mixture of hydrogen and helium shown in Figure 5．15a to the conditions illustrated in Figure 5．15b．

Example 5.18

A 1．00－L sample of dry air at $25{ }^{\circ} \mathrm{C}$ contains $0.0319 \mathrm{~mol} \mathrm{~N}_{2}, 0.00856 \mathrm{~mol} \mathrm{O}_{2}, 0.000381 \mathrm{~mol}$ Ar， and $0.00002 \mathrm{~mol} \mathrm{CO}_{2}$ ．Calculate the partial pressure of $\mathrm{N}_{2}(\mathrm{~g})$ in the mixture．

Mole Fraction（莫耳分率）

－The mole fraction (x) of a gas is the fraction of all the molecules in a mixture that are of a given type．

$$
x_{1}=\frac{n_{1}}{n_{\text {total }}}
$$

－Since pressure（at constant T and V ） is directly proportional to number of moles：

$$
x_{1}=\frac{P_{1}}{P_{\text {total }}}
$$

or
We can find the partial
pressure of a gas from
its mole fraction and the total pressure． ．

$$
P_{1}=x_{1} P_{\text {total }}
$$

Prentice Hall © 2005
Chapter Five

Collection of Gases over Water

－As（essentially insoluble）gas is bubbled into the container for collection，the water is displaced．
－The gas collected is usually saturated with water vapor

Assuming the gas is saturated with water vapor，the partial pressure of the water vapor is the vapor pressure of the water．
$\boldsymbol{P}_{\text {gas }}=\boldsymbol{P}_{\text {total }}-\boldsymbol{P}_{\mathrm{H} 2 \mathrm{O}(\mathrm{g})}=\boldsymbol{P}_{\text {bar }}-\boldsymbol{P}_{\mathrm{H} 2 \mathrm{O}(\mathrm{g})}$ Prentice Hall © 2005

Example 5.21
Hydrogen produced in the following reaction is collected over water at $23^{\circ} \mathrm{C}$ when the barometric pressure is 742 Torr:

$$
2 \mathrm{Al}(\mathrm{~s})+6 \mathrm{HCl}(\mathrm{aq}) \rightarrow 2 \mathrm{AlCl}_{3}(\mathrm{aq})+3 \mathrm{H}_{2}(\mathrm{~g})
$$

What volume of the "wet" gas will be collected in the reaction of $1.50 \mathrm{~g} \mathrm{Al}(\mathrm{s})$ with excess $\mathrm{HCl}(\mathrm{aq})$?

The Kinetic-Molecular Theory: Some Quantitative Aspects

The principal assumptions of kinetic-molecular theory are:

- A gas is made up of molecules that are in constant, random, straight-line motion.
- Molecules of a gas are far apart; a gas is mostly empty space.
- There are no forces between molecules except during the instant of collision.
- Individual molecules may gain or lose energy as a result of collisions; however, the total energy remains constant.

The Kinetic-Molecular Theory:
Some Quantitative Aspects (2)
Using the assumptions of kinetic-molecular theory, we can show that:

$$
P=\frac{1}{3} \cdot \frac{N}{V} \cdot m \cdot \overline{u^{2}}
$$

where
$P=$ pressure
$N=$ number of molecules
$V=$ volume
$m=$ mass of each molecule
$u^{2}=$ average of the squares of the speeds of the molecules.
Prentice Hall © 2005
Chapter Five

The Kinetic-Molecular Theory and Temperature

From the previous equation we can derive the following:

$$
e_{\mathrm{k}}=\frac{3}{2} \cdot \frac{R}{N_{\mathrm{A}}} \cdot T
$$

where
$R=$ ideal gas constant (a constant)
$N_{\mathrm{A}}=$ Avogadro's number (a constant), therefore:

$$
e_{\mathrm{k}}=(\text { constant }) \cdot T
$$

The average translational kinetic energy of the molecules of a gas is directly proportional to the Kelvin temperature.

Molecular Speeds

- Gas molecules do not all move at the same speed, they have a wide distribution of speeds.
- The root-mean-square speed, u_{rms}, is the square root of the average of the squares of the molecular speeds.

$$
u_{\mathrm{rms}}=\sqrt{\overline{u^{2}}}=\sqrt{\frac{3 R T}{M}}
$$

- Typical speeds are quite high, on the order of $1000 \mathrm{~m} / \mathrm{s}$.
- At a fixed temperature, molecules of higher mass (M) move more slowly than molecules of lower mass.

The distribution of speeds for nitrogen gas molecules at three different temperatures

$$
u_{\mathrm{rms}}=\sqrt{\frac{3 R T}{\mathcal{M}}}
$$

The distribution of speeds of three different gases at the same temperature

Example 5．22：A Conceptual Example
Without doing detailed calculations，determine which of the following is a likely value for $u_{r m s}$ of O_{2} molecules at 0 ${ }^{\circ} \mathrm{C}$ ，if u_{rms} of H_{2} at $0^{\circ} \mathrm{C}$ is $1838 \mathrm{~m} / \mathrm{s}$ ．
（a） $115 \mathrm{~m} / \mathrm{s}$
（b） $460 \mathrm{~m} / \mathrm{s}$
（c） $1838 \mathrm{~m} / \mathrm{s}$
（d） $7352 \mathrm{~m} / \mathrm{s}$
（e） $29,400 \mathrm{~m} / \mathrm{s}$

Diffusion（擴散）

－Diffusion is the process by which one substance mixes with one or more other substances as a result of the translational motion of molecules．
－Diffusion of gases is much slower than would be predicted by molecular speeds due to the frequent collisions of molecules．
－The average distance a molecule travels between collisions is called its mean free path．

Effusion（逸散）

－Effusion is（mathematically） simpler than diffusion since effusion does not involve molecular collisions．
－At a fixed T ，the rates of effusion of gas molecules are inversely proportional to the square roots of their molar masses：

$$
\frac{\text { rate }_{1}}{\text { rate }_{2}}=\frac{\sqrt{\frac{3 R T}{M_{1}}}}{\sqrt{\frac{3 R T}{M_{2}}}}=\sqrt{\frac{M_{2}}{M_{1}}}
$$

Fewer light molecules，more heavy molecules remain．

Real Gases

Under some conditions, real gases do not follow the ideal gas law.

1. Intermolecular forces of attraction cause the measured pressure of a real gas to be less than expected.
2. When molecules are close together, the volume of the molecules themselves becomes a significant fraction of the total volume of a gas.

Under what conditions of temperature and pressure will \#1 and \#2 become important?

Intermolecular Forces of Attraction

Prentice Hall © 2005

Real Gases

- Ideal gas equation (ideal gases):

$$
\left[\begin{array}{ll}
P &](V
\end{array}\right)=n R T
$$

- van der Waals equation (real gases):

$$
\left[P+\left\{\left(n^{2} a\right) / V^{2}\right\}\right](V-n b)=n R T
$$

- a - term is related to intermolecular force strength.
- $\quad b$ - term is related to volume of the gas molecules (in liters per mole).
- Both a and b are empirical constants, determined by experiment.

Prentice Hall © 2005
Chapter Five

Cumulative Example

Two cylinders of gas are used in welding. One cylinder is 1.2 m high and 18 cm in diameter, containing oxygen gas at 2550 psi and $19{ }^{\circ} \mathrm{C}$. The other is 0.76 m high and 28 cm in diameter, containing acetylene gas $\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$ at 320 psi and 19 C. Assuming complete combustion, which tank will be emptied, leaving unreacted gas in the other?

[^0]: - Pressure: collision of gas molecules with wall of container.

[^1]: Prentice Hall © 2005

