Chapter Seven

Investigating Cathode Rays

J. J. Thomson used the deflection of cathode rays and the magnetic field strength together, to find the cathode ray particle's mass-to-charge ratio: $m_{\mathrm{e}} / e=-5.686 \times 10^{-12} \mathrm{~kg} / \mathrm{C}$

Prentice Hall © 2005
Chapter Seven

Millikan's Oil Drop Experiment

- George Stoney: names the cathode-ray particle the electron.
- Robert Millikan: determines a value for the electron's charge:

$$
e=-1.602 \times 10^{-19} \mathrm{C}
$$

Properties of the Electron

- Thomson determined the mass-to-charge ratio; Millikan found the charge; we can now find the mass of an electron:

$$
m_{\mathrm{e}}=9.109 \times 10^{-31} \mathrm{~kg} / \text { electron }
$$

- This is almost 2000 times less than the mass of a hydrogen atom $\left(1.79 \times 10^{-27} \mathrm{~kg}\right)$
- Some investigators thought that cathode rays (electrons) were negatively charged ions.
- But the mass of an electron is shown to be much smaller than even a hydrogen atom, so an electron cannot be an ion.
- Since electrons are the same regardless of the cathode material, these tiny particles must be a negative part of all matter.

Protons and Neutrons

- Rutherford's experiments also told him the amount of positive nuclear charge.
- The positive charge was carried by particles that were named protons.
- The proton charge was the fundamental unit of positive charge.
- The nucleus of a hydrogen atom consists of a single proton.
- Scientists introduced the concept of atomic number, which represents the number of protons in the nucleus of an atom.
- James Chadwick discovered neutrons in the nucleus, which have nearly the same mass as protons but are uncharged.

Mass Spectrometry

- Research into cathode rays showed that a cathoderay tube also produced positive particles.
- Unlike cathode rays, these positive particles were ions.
- The metal of the cathode: $\mathrm{M} \rightarrow \mathrm{e}^{-}+\mathrm{M}^{+}$

Mass Spectrometry (cont'd)

- In mass spectrometry a stream of positive ions having equal velocities is brought into a magnetic field.
- All the ions are deflected from their straight line paths.
- The lightest ions are deflected the most; the heaviest ions are deflected the least.
- The ions are thus separated by mass.
- Actually, separation is by mass-to-charge ratio (m/e), but the mass spectrometer is designed so that most particles attain a $1+$ charge.

Wavelength and Frequency

- Wavelength (λ) is the distance between any two identical points in consecutive cycles.

- Frequency (v) of a wave is the number of cycles of the wave that pass through a point in a unit of time. Unit = waves/s or s ${ }^{-1}$ (hertz).

Wavelength and Frequency

Example 7.1
Calculate the frequency of an X ray that has a wavelength of 8.21 nm .
The relationship between wavelength and frequency:

$$
c=\lambda v
$$

where c is the speed of light $\left(3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)$
$\left(2.99792458 \times 10^{8}\right) \mathrm{m} / \mathrm{s}$

Example 7.2 A Conceptual Example
Which light has the higher frequency: the bright red brake light of an automobile or the faint green light of a distant traffic signal?

The Photoelectric Effect (cont'd)

The Photoelectric Effect Explained

Example 7.3

Calculate the energy, in joules, of a photon of violet light that has a frequency of $6.15 \times 10^{14} \mathrm{~s}^{-1}$.

Example 7.4

A laser produces red light of wavelength 632.8 nm .
Calculate the energy, in kilojoules, of 1 mol of photons of this red light.

Bohr's Hydrogen Atom

- Niels Bohr followed Planck's and Einstein's lead by proposing that electron energy $\left(E_{\mathrm{n}}\right)$ was quantized.
- The electron in an atom could have only certain allowed values of energy (just as energy itself is quantized).
- Each specified energy value is called an energy level of the atom:

$$
E_{\mathrm{n}}=-B / n^{2}
$$

$-n$ is an integer, and B is a constant $\left(2.179 \times 10^{-18} \mathrm{~J}\right)$

- The negative sign represents force of attraction.
- The energy is zero when the electron is located infinitely far from the nucleus.

Example 7.5

Calculate the energy of an electron in the second energy level of a hydrogen atom.

The Bohr Model of Hydrogen

Line Spectra Arise Because ...

- ... each electronic energy level in an atom is quantized.
Since the levels are quantized, changes between levels must also be quantized.
- A specific change thus represents one specific energy, one specific frequency, and therefore one specific wavelength.

Prentice Hall © 2005	Genemil Chemistyy 4" edition, Hill. Petrucci. McCreary. Perry	Chapter Seven

Bohr's Equation ...

- ... allows us to find the energy change $\left(\Delta E_{\text {level }}\right)$ that accompanies the transition of an electron from one energy level to another.

Initial energy level:
Final energy level:

$$
E_{\mathrm{i}}=\frac{-B}{n_{\mathrm{i}}^{2}}
$$

$$
E_{\mathrm{f}}=\frac{-B}{n_{\mathrm{f}}^{2}}
$$

- To find the energy difference, just subtract:

$$
\Delta E_{\text {level }}=\frac{-\boldsymbol{B}}{n_{\mathrm{f}}^{2}}-\frac{-\boldsymbol{B}}{\boldsymbol{n}_{\mathrm{i}}^{2}}=B\left[\frac{1}{n_{\mathrm{i}}^{2}}-\frac{1}{n_{\mathrm{f}}^{2}}\right]
$$

- Together, all the photons having this energy $\left(\Delta E_{\text {level }}\right)$ produce one spectral line.

Example 7.6

Calculate the energy change, in joules, that occurs when an electron falls from the $n_{i}=5$ to the $n_{f}=3$ energy level in a hydrogen atom.

Example 7.7

Calculate the frequency of the radiation released by the transition of an electron in a hydrogen atom from the n $=5$ level to the $n=3$ level, the transition we looked at in Example 7.6.

Ground States and Excited States

- When an atom has its electrons in their lowest possible energy levels, the atom is in its ground state.
- When an electron has been promoted to a higher level, the electron (and the atom) is in an excited state.
- Electrons are promoted to higher levels through an electric discharge, heat, or some other source of energy.
- An atom in an excited state eventually emits a photon (or several) as the electron drops back down to the ground state.
Example 7.8

A Conceptual Example
Without doing detailed calculations,
determine which of the four electron
transitions shown in Figure 7.19
produces the shortest-wavelength
line in the hydrogen emission
spectrum.

Prenice Hall © 2005

Example 7.9

Calculate the wavelength, in meters and nanometers, of an electron moving at a speed of $2.74 \times 10^{6} \mathrm{~m} / \mathrm{s}$. The mass of an electron is $9.11 \times 10^{-31} \mathrm{~kg}$, and $1 \mathrm{~J}=1$ $\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-2}$.

Wave Functions

－Erwin Schrödinger：We can describe the electron mathematically，using quantum mechanics（wave mechanics）．
－Schrödinger developed a wave equation to describe the hydrogen atom．
－An acceptable solution to Schrödinger＇s wave equation is called a wave function．
－A wave function represents an energy state of the atom．

The Uncertainty Principle

Werner Heisenberg：We can＇t know exactly where a moving particle is AND exactly how fast it is moving at the same time．

The Uncertainty Principle

－A wave function doesn＇t tell us where the electron is． The uncertainty principle tells us that we can＇t know where the electron is．
－However，the square of a wave function gives the probability of finding an electron at a given location in an atom．
－Analogy：We can＇t tell where a single leaf from a tree will fall．But（by viewing all the leaves under the tree）we can describe where a leaf is most likely to fall．

Quantum Numbers：n

When values are assigned to the three quantum numbers，a specific atomic orbital has been defined．

The principal quantum number（ n ）：主量子數
－Is independent of the other two quantum numbers．
－Can only be a positive integer（ $n=1,2,3,4, \ldots$ ）
－The size of an orbital and its electron energy depend on the value of n ．
－Orbitals with the same value of n are said to be in the same principal shell．主層

Quantum Numbers：l

The orbital angular momentum quantum number（ l ）：第二量子數；角動量量子數
－Determines the shape of the orbital．
－Can have positive integral values from $0,1,2, \ldots(n-1)$
－Orbitals having the same values of n and of l are said to be in the same subshell．次層

Value of l	0	1	2	3
Subshell	s	p	d	f

－Each orbital designation represents a different region of space and a different shape．

Prentice Hall © 2005
Chapter Seven

Quantum Numbers：m_{l}

The magnetic quantum number $\left(m_{l}\right)$ ：磁量子數
－Determines the orientation in space of the orbitals of any given type in a subshell．
－Can be any integer from $-l$ to $+l$
－The number of possible values for m_{l} is +1 ），and this determines the number of orbitals in a subshell．

Example 7.10

Considering the limitations on values for the various quantum numbers，state whether an electron can be described by each of the following sets．If a set is not possible，state why not．
（a）$n=2, I=1, m_{l}=-1$
（c）$n=7, l=3, m_{l}=+3$
（b）$n=1, l=1, m_{l}=+1$
（d）$n=3, l=1, m_{l}=-3$

Example 7.11

Consider the relationship among quantum numbers and orbitals，subshells，and principal shells to answer the following．（a）How many orbitals are there in the $4 d$ subshell？（b）What is the first principal shell in which f orbitals can be found？（c）Can an atom have a $2 d$ subshell？（d）Can a hydrogen atom have a $3 p$ subshell？

The $1 s$ Orbital

－The $1 s$ orbital $\left(n=1, l=0, m_{l}=0\right)$ has spherical symmetry．
－An electron in this orbital spends most of its time near the nucleus．

CUMULATIVE EXAMPLE

Which will produce more energy per gram of hydrogen: H atoms undergoing an electronic transition from the level $n=4$ to the level $n=1$, or hydrogen gas burned in the reaction:

$$
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) ?
$$

