

Electron Configurations • An *electron configuration* describes the distribution of electrons among the various orbitals in the atom. · Electron configuration is represented in two ways. Electrons are i the / = 0 (s) wo electron in the 1s The spdf notation uses numbers to designate a principal shell and letters (s, p, d, f) to identify a subshell; a superscript indicates the number of electrons in a designated subshell. the n = 1energy level. Prentice Hall © 2005 Chapter Eight

Rules for Electron Configurations

- Electrons ordinarily occupy orbitals of the lowest energy available.
- No two electrons in the same atom may have all four quantum numbers alike.
- *Pauli exclusion principle*: one atomic orbital can accommodate no more than *two* electrons, and these electrons must have *opposing* spins.
- Of a group of orbitals of *identical* energy, electrons enter *empty* orbitals whenever possible (*Hund's rule*).
- Electrons in half-filled orbitals have *parallel* spins (same direction).

ral Chemistry 4th edition, Hill, Petrucci, McCreary, Per

Prentice Hall © 2005

Chapter Eight

16

Chapter Eight

Example 8.2

Prentice Hall © 2005

Prentice Hall © 2005

Give the complete ground-state electron configuration of a strontium atom (a) in the *spdf* notation and (b) in the noble-gas-core abbreviated notation.

Chapter Eight

13

Chapter Eight

Electron Configurations of lons (cont'd)

- A metal atom loses electrons to form a *cation*.
- Electrons are *removed* from the configuration of the atom.
- The first electrons lost are those of the *highest principal* quantum number.
- If there are two subshells with the same highest principal quantum number, electrons are lost from the subshell with the higher *l*.

Noble Gas	Pseudo-Noble Gas ^a	18 + 2 ^b	Various
$\begin{array}{c} & & & & & & \\ & & & & & & \\ & & & & & $	Cu^+ Cd^{2+} Ag^+ Cd^{2+} Au^+ Hg^{2+}	111 ⁺ Sn ²⁺ Pb ²⁺ Sb ³⁺ Bi ³⁺	Cr ³⁺ : [Ar] $3d^3$ Mn ²⁺ : [Ar] $3d^3$ Mn ³⁺ : [Ar] $3d^3$ Fe ²⁺ : [Ar] $3d^6$ Fe ³⁺ : [Ar] $3d^7$ Co ³⁺ : [Ar] $3d^8$ Ni ²⁺ : [Ar] $3d^8$

Magnetic Properties

21

Chapter Eight

23

Chapter Eight

- Diamagnetism (逆磁性) is the weak repulsion associated with paired electrons.
- *Paramagnetism* (順磁性) is the attraction associated with *unpaired* electrons.
 - This produces a much stronger effect than the weak diamagnetism of paired electrons.
- *Ferromagnetism*(鐵磁性) is the exceptionally strong attractions of a magnetic field for iron and a few other substances.

Example 8.4

Prentice Hall © 2005

A sample of chlorine gas is found to be diamagnetic. Can this gaseous sample be composed of individual CI atoms?

Prentice Hall © 2005

, Perry

			30
Example 8.5			
With reference of elements in orde	only to a periodic tab er of increasing aton	ile, arrange each set c nic radius:	of
(a) Mg, S, Si	(b) As, N, P	(c) As, Sb, Se	
ntice Hall © 2005	General Chemistry 4th edition, Hill, Petrucci, !	AcCreary, Perry Chapte	r Eight

Example 8.6

Refer to a periodic table but not to Figure 8.14, and arrange the following species in the expected order of increasing radius: Ca^{2+} , Fe^{3+} , K^+ , S^{2-} , Se^{2-}

Prentice Hall © 2005

Chapter Eight

3

Ionization Energy Trends

- $I_1 < I_2 < I_3$
 - Removing an electron from a *positive ion* is more difficult than removing it from a *neutral atom*.
- A large jump in *I* occurs after valence electrons are completely removed (why?).
- *I*₁ *decreases* from top to bottom on the periodic table.
 - *n* increases; valence electron is farther from nucleus.
- *I*₁ generally *increases* from left to right, with exceptions.
 - Greater effective nuclear charge from left to right holds electrons more tightly.

dthadition Hill Patracci McCi

Chapter Eight

Prentice Hall © 2005

Selected	Table Energ Group	8.4 Ionizati ies of Group 2A Element	on 1A and ts, kJ /mol
Energies		1A	2A
Compare I ₂ to I ₁ for a 2A	I_1 I_2	Li 520 7298	Be 900 1757
element, then for the corresponding 1A element.	I_1 I_2	Na 496 4562	Mg 738 1451
so much greater than I_1 ?	I_1 I_2	K 419 3044	Ca 590 1145
Why don't we see the <i>same</i> trend for each 2A element? $I_2 > I_1$ but only about twice as great	I_1 I_2	Rb 403 2633	Sr 550 1064
	I_1 I_2	Cs 376 2230	Ba 503 965
entice Hall © 2005	Copyrigi	ht © 2004 Pearson Pr	entice Hall, Inc.

 Electron affinity generally is *more* negative or less positiv on the right and toward the top of the periodic table.

Chapter Eigh

Prentice Hall © 2005

	electr n	greater affin rons than do netals, as exp	ity for the alkali pected.				
Table I A	8.6 Some	e Selected 3A	First Electi 4A	ron Affini 5A	ties, hitmo 6A	1 7A	8A
i	Be	B -27	C -154	N ≈0	0 -141	F -328	Ne >0

							M	le	ta	ll	0	id	S						
• Al not me	nea nm eta	ıvy ieta <mark>llo</mark>	' ste als; <mark>ids</mark>	epj sc	oec	l di e el	iag len	on her	al 1 its	ine alo	e se ong	epa th	rat is l	es line	me e ai	etal re d	ls f cal	rom led	
• Me	etal	lloi	ids	ha	ve	pr	ope	erti	es	of	bo	th	me	etal	s a	nd	nc	onmetals.	
1	IA						Met	ab										8A He	
	H	2A He				1	Not	ik gas	es.				3A B	4A C	5A N	64	7A	N	
	-	Ma											AL				a		
10		-	38	48	58	68	78	-	-8B-		18	28	-	-					
2.												2A	-				in.	N.F	
12	RD	Ser	Y	20	NB	Mo	Te	Ne	101	Per l	Ag	Cd.	In	50	30	30		Xe	
1	Cs.	Ba	Lar	Hr	Ta	w	Re	05	Ir	Pt	As	Hg	n	Pb		Po	At	Re	
	Fr	Ra	Act	Rſ	DF	Sg	Bb	Hs	MI	Ds		**							
7					14	11-	r Nd Pm Sm En Gd Th Dy Ho Er Tm Yh Lu												
7	4	anna	tide ser	145		100	1.000	1.000											

40

51

Chapter Eight

Example 8.9

Prentice Hall © 2005

In each set, indicate which is the more metallic element. (a) Ba, Ca (b) Sb, Sn (c) Ge, S

Example 8.10 A Conceptual Example

Using only a blank periodic table such as the one in Figure 8.17, state the atomic number of (a) the element that has the electron configuration $4s^2 4p^6 4o^6 5s^1$ for its fourth and fifth principal shells and (b) the most metallic of the fifth-period *p*-block elements.

Chapter Eight

55 56 Acidic, Basic, and Amphoteric **Oxidizing and Reducing Agents Revisited** Oxides • The s-block elements are very strong reducing agents. All the IA metals and the heavier IIA metals will displace • An *acidic oxide* produces an acid when the oxide H_2 from water, in part because of their low values of IE_1 . reacts with water. • A low IE₁ means that the metal easily gives up its · Acidic oxides are molecular substances and are electron(s) to hydrogen in water, forming hydrogen gas. generally the oxides of *nonmetals*. Potassium metal • Basic oxides produce bases by reacting with water. reacts violently with water. The liberated • Often, basic oxides are *metal* oxides. H₂ ignites. An *amphoteric oxide* can react with either an acid ٠ or a base. while magnesiun is largely nonreactive toward cold water. Calcium metal reacts

ntice Hall © 2005

Chapter Eight

57 Properties of the Oxides of the **Main-group Elements** 3A 4A 5A 6A 7A 1A 2A Li Be B C N O F Si Na Mg Al P S CI K Ca Ga Ge As Se Br The metalloids and some of the heavier metals form amphoteric oxides. Rb Sr In Sn Sb Te 1 Cs Ba Tl Pb Bi Po At Acidic Basic Amphoteric Prentice Hall © 2005 Chapter Eight

readily with water ...

(a)

Prentice Hall © 2005

