

William L Masterton
 Cecile N. Hurley

http://academic.cengage.com/chemistry/masterton

Chapter 13 Acids and Bases

Edward J. Neth • University of Connecticut

Outline

1. Brønsted-Lowry acid-base model
2. The ion product of water
3. pH and pOH
4. Weak acids and their equilibrium constants
5. Weak bases and their equilibrium constants
6. Acid-base properties of salt solutions

Review from Chapter 4

- The Arrhenius definition of acid and base
- Acids produce H^{+}in water
- Bases produce OH^{-}in water
- H^{+}from acids combines with OH^{-}from bases to produce water in a reaction called a neutralization

Brønsted-Lowry Acid-Base Model

- Brønsted-Lowry
- Johannes Brønsted (1879-1947)
- Thomas Lowry (1874-1936)
- Brønsted-Lowry model focuses on the reaction that takes place between acid and base, rather than on the independent nature of the acid or base, as the Arrhenius model does
- Acids donate H^{+}to bases
- Bases accept H^{+}from acids

The Nature of H^{+}

- The H^{+}ion is the medium of exchange in a Brønsted-Lowry reaction
- H^{+}can also be called a proton
- Acid-base reactions involve proton exchange

Conjugate Pairs

- The species that forms when a proton is removed from an acid is called the conjugate base of the acid
- If the acid is HB , the conjugate base is B^{-}
- The only difference between the members of a conjugate acid-base pair is the position of the proton
- A species that can either accept or donate a proton is called amphiprotic
- Consider water:
- $\mathrm{OH}^{-} \mathrm{fl} \mathrm{H}_{2} \mathrm{O} \ddagger \mathrm{H}_{3} \mathrm{O}^{+}$

Remove $\mathrm{H}^{+} \quad$ Add H^{+}

Examples of Conjugate Acid-Base Pairs

Conjugate Acid	Conjugate Base
HF	F^{-}
$\mathrm{HSO}_{4}{ }^{-}$	$\mathrm{SO}_{4}{ }^{2-}$
$\mathrm{NH}_{4}{ }^{+}$	NH_{3}

The Hydronium Ion

- Another way to write the H^{+}ion is as $\mathrm{H}_{3} \mathrm{O}^{+}$
- $\mathrm{H}_{3} \mathrm{O}^{+}$is the hydronium ion
- H^{+}exists in water as hydronium ion, since H^{+}itself would not be stable in water
- Depending on the reason for writing the reaction, either H^{+}or $\mathrm{H}_{3} \mathrm{O}^{+}$can be used, and interchangeably
- The only difference is the inclusion or exclusion of the $\mathrm{H}_{2} \mathrm{O}$ molecule

Example 13.1

Example 13.1

(a) What is the conjugate base of HNO_{2} ? The conjugate acid of F^{-}?
(b) The $\mathrm{HCO}_{3}{ }^{-}$ion, like the $\mathrm{H}_{2} \mathrm{O}$ molecule, is amphiprotic. What is its conjugate base? Its conjugate acid?

Strategy To form a conjugate base, remove H^{+}; the effect is to lower the number of hydrogen atoms by one and lower the charge by one unit. Conversely, a conjugate acid is formed by adding H^{+}; this adds a H atom and increases the charge by one unit.

SOLUTION
(a) $\mathrm{NO}_{2}{ }^{-} ; \mathrm{HF}$
(b) $\mathrm{CO}_{3}{ }^{2-} ; \mathrm{H}_{2} \mathrm{CO}_{3}$

The Ion Product of Water

- Water can react with itself in a reaction called autoionization
- Water can react with itself in an acid-base reaction:
- $\mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
- An alternate way to write the reaction is:
- $\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$

Equilibrium and the Auto-Ionization of Water

- $\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
- Recall that concentrations can be used to write equilibrium constant expressions
- K for this reaction is $\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$
- This K is called the ion product constant of water, K_{w}
- $\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$
- At $25^{\circ} \mathrm{C}, \mathrm{K}_{\mathrm{w}}=1.0 \times 10^{-14}$

Concentrations of H^{+}and OH^{-}in pure water

- In pure water, $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14}$
- $\left[\mathrm{H}^{+}\right]=1.0 \times 10^{-7}$
- $\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-7}$
- When the two concentrations are equal, the solution is said to be neutral
- If $\left[\mathrm{H}^{+}\right]>1.0 \times 10^{-7}$, then $\left[\mathrm{OH}^{-}\right]<1.0 \times 10^{-7}$ and the solution is acidic
- If $\left[\mathrm{OH}^{-}\right]>1.0 \times 10^{-7}$, then $\left[\mathrm{H}^{+}\right]<1.0 \times 10^{-7}$ and the solution is basic

Figure 13.1

$\left[\mathrm{H}^{+}\right]$(units are $1.0 \times 10^{-7} \mathrm{M}$)

pH

- Defining equation for pH

$$
\begin{aligned}
& p H=-\log \left[H^{+}\right] \\
& {\left[H^{+}\right]=\operatorname{anti} \log (-p H)=10^{-p H}}
\end{aligned}
$$

- The higher the pH , the less acidic the solution
- The lower the pH , the more acidic the solution

Figure 13.2

pOH

- Defining equation for pH

$$
\begin{aligned}
& \mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right] \\
& {\left[\mathrm{OH}^{-}\right]=\text {antilog }[-\mathrm{pOH}]=10^{-\mathrm{pOH}}}
\end{aligned}
$$

- The higher the pOH , the more basic the solution
- The lower the pOH , the more acidic the solution

Relationship between pH and pOH

$$
\begin{aligned}
& {\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14}} \\
& p H+p O H=14
\end{aligned}
$$

Example 13.2

Example 13.2 Graded

Calculate, at $25^{\circ} \mathrm{C}$
$*$ (a) the $\left[\mathrm{H}^{+}\right]$and pH of a tap-water sample in which $\left[\mathrm{OH}^{-}\right]=2.0 \times 10^{-7}$.
** (b) the $\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$of human blood at pH 7.40 .
$* * *$ (c) the pOH of a solution in which $\left[\mathrm{H}^{+}\right]=5.0\left[\mathrm{OH}^{-}\right]$.

Example 13.2, (Cont'd)

SOLUTION

(a) $\left[\mathrm{H}^{+}\right]=\frac{1.0 \times 10^{-14}}{2.0 \times 10^{-7}}=5.0 \times 10^{-8} \mathrm{M}$
$\mathrm{pH}=-\log _{10}\left(5.0 \times 10^{-8}\right)$
You should find on your calculator that $\log _{10}\left(5.0 \times 10^{-8}\right)$ is -7.30 . Hence, $\mathrm{pH}=7.30$.
(b) Because the pH is $7.40,\left[\mathrm{H}^{+}\right]=10^{-7.40}$. To find $\left[\mathrm{H}^{+}\right]$, enter -7.40 on your calculator. Then either-

- punch the 10^{x} key, if you have one, or
- punch the INV and then the LOG key

Either way, you should find that $\left[\mathrm{H}^{+}\right]=4.0 \times 10^{-8} \mathrm{M}$.
Knowing $\left[\mathrm{H}^{+}\right]$, the concentration of OH^{-}is calculated from Equation 13.1.

$$
\left[\mathrm{OH}^{-}\right]=\frac{1.0 \times 10^{-14}}{4.0 \times 10^{-8}}=2.5 \times 10^{-7} \mathrm{M}
$$

(c) Substitute into the K_{W} expression to find $\left[\mathrm{OH}^{-}\right]$and then convert to pOH .

$$
\begin{gathered}
5.0\left[\mathrm{OH}^{-}\right] \times\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14} \\
{\left[\mathrm{OH}^{-}\right]^{2}=\frac{1.0 \times 10^{-14}}{5.0} ; \quad\left[\mathrm{OH}^{-}\right]=4.5 \times 10^{-8} \mathrm{M}} \\
\mathrm{pOH}=-\log _{10}\left(4.5 \times 10^{-8}\right)=7.35
\end{gathered}
$$

pH and Blood

- From the previous example, it is seen that the $\left[\mathrm{H}^{+}\right]$in blood is very small, about $4.0 \times 10^{-8} \mathrm{M}$
- Small changes in $\left[\mathrm{H}^{+}\right]$can have dramatic physiological effects
- Many biological reactions depend on $\left[\mathrm{H}^{+}\right]$
- An increase in $\left[\mathrm{H}^{+}\right]$from 4.0×10^{-8} to 4.0×10^{-7} can increase the a reaction rate by a power of 10
- Small increases in [H^{+}] can lead to acidosis; small decreases in $\left[\mathrm{H}^{+}\right]$can lead to alkalosis
- Effective control of many physiological reactions depends on pH control

pH of Strong Acids

- Recall from Chapter 4 that some acids are strong
- $\mathrm{HCl}, \mathrm{HBr}, \mathrm{HI}, \mathrm{HClO}_{4}, \mathrm{HNO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}$
- These completely ionize in water
- $\left[\mathrm{H}^{+}\right]$is equal to the $\left[\mathrm{H}^{+}\right]$of the acid
- A 0.10 M solution of HCl has $\left[\mathrm{H}^{+}\right]=0.10$, so the pH of the solution is 1.0

Figure 13.3

pH of Strong Bases

- Recall as well that some bases are strong:
- LiOH, NaOH, KOH, Ca(OH) $2, \mathrm{Sr}(\mathrm{OH})_{2}, \mathrm{Ba}(\mathrm{OH})_{2}$
- These bases ionize completely to OH^{-}
- pOH is dependent on the concentration of the strong base
- For an 0.10 M solution of NaOH ,
- $\left[\mathrm{Na}^{+}\right]=\left[\mathrm{OH}^{-}\right]=0.10$
- $\mathrm{pOH}=1.0$
- $\mathrm{pH}=13.0$

Example 13.1

Example 13.1

(a) What is the conjugate base of HNO_{2} ? The conjugate acid of F^{-}?
(b) The $\mathrm{HCO}_{3}{ }^{-}$ion, like the $\mathrm{H}_{2} \mathrm{O}$ molecule, is amphiprotic. What is its conjugate base? Its conjugate acid?

Strategy To form a conjugate base, remove H^{+}; the effect is to lower the number of hydrogen atoms by one and lower the charge by one unit. Conversely, a conjugate acid is formed by adding H^{+}; this adds a H atom and increases the charge by one unit.

SOLUTION
(a) $\mathrm{NO}_{2}{ }^{-} ; \mathrm{HF}$
(b) $\mathrm{CO}_{3}{ }^{2-} ; \mathrm{H}_{2} \mathrm{CO}_{3}$

Measuring pH

- pH can be measured with a pH meter
- Translates $\left[\mathrm{H}^{+}\right]$into an electrical signal
- Signal is shown on an analog or digital meter calibrated in pH units

Figure 13.4

© Brooks/Cole, Cengage Learning

pH Indicators

- Universal indicator
- Mixture of substances that change color depending on the concentration of H^{+}
- Less accurate than pH meter
- Depending on the indicator used, can display pH over a narrow or wide range of $\left[\mathrm{H}^{+}\right]$
- Some plants can act as pH indicators
- Color of some flowers in plants is dependent on the pH of the soil in which the plant is grown

Figure 13.5

Figure 13.6

Weak Acid Equilibrium Constants

- Weak acids ionize only partially
- Prototype reaction
- $\mathrm{HB}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{B}^{-}(\mathrm{aq})$
- Two types of species that behave as weak acids

1. Molecules with an ionizable hydrogen atom

- $\mathrm{HNO}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{NO}_{2}^{-}(\mathrm{aq})$

2. Cations

- $\mathrm{NH}_{4}{ }^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{NH}_{3}(\mathrm{aq})$

Metal Cations as Acids

- Many metal cations act as weak acids in water solution as well

$$
\text { - } \mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}{ }^{2+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq}) \mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})^{+}(\mathrm{aq})
$$

- The bond that forms between the oxygen and the metal ion weakens the O-H bond
- H^{+}is more easily ionized as a result of the weakened bond

Equilibrium Constants for Weak Acids

- $\mathrm{HB}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}$ U $\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{B}^{-}(\mathrm{aq})$
- K_{a} is the acid equilibrium constant
- Simplifying the above to $\mathrm{HB}(\mathrm{aq}) \hat{\mathrm{U}} \mathrm{H}^{+}(\mathrm{aq})+\mathrm{B}^{-}(\mathrm{aq})$

$$
K_{a}=\frac{\left[H^{+}\right]\left[B^{-}\right]}{[H B]}
$$

- K_{a} values are related to the weak acid strength
- The smaller K_{a} is, the weaker the acid is

Table 13.2

Table 13.2 Equilibrium Constants for Weak Acids and Their Conjugate Bases

	Acid	$K_{\text {a }}$	Base	$K_{\text {b }}$
Sulfurous acid	$\mathrm{H}_{2} \mathrm{SO}_{3}$	1.7×10^{-2}	$\mathrm{HSO}_{3}{ }^{-}$	5.9×10^{-13}
Hydrogen sulfate ion	$\mathrm{HSO}_{4}{ }^{-}$	1.0×10^{-2}	$\mathrm{SO}_{4}{ }^{2-}$	1.0×10^{-12}
Phosphoric acid	$\mathrm{H}_{3} \mathrm{PO}_{4}$	7.1×10^{-3}	$\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$	1.4×10^{-12}
Hexaaquairon(III) ion	$\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{3+}$	6.7×10^{-3}	$\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{OH}^{2+}$	1.5×10^{-12}
Hydrofluoric acid	HF	6.9×10^{-4}	F^{-}	1.4×10^{-11}
Nitrous acid	HNO_{2}	6.0×10^{-4}	$\mathrm{NO}_{2}{ }^{-}$	1.7×10^{-11}
Formic acid	HCHO_{2}	1.9×10^{-4}	$\mathrm{CHO}_{2}{ }^{-}$	5.3×10^{-11}
Lactic acid	$\mathrm{HC}_{3} \mathrm{H}_{5} \mathrm{O}_{3}$	1.4×10^{-4}	$\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{3}-$	7.1×10^{-11}
Benzoic acid	$\mathrm{HC}_{7} \mathrm{H}_{5} \mathrm{O}_{2}$	6.6×10^{-5}	$\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}{ }^{-}$	1.5×10^{-10}
Acetic acid	$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$	1.8×10^{-5}	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}$	5.6×10^{-10}
Hexaaquaaluminum(III) ion	$\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{3+}$	1.2×10^{-5}	$\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{OH}^{2+}$	8.3×10^{-10}
Carbonic acid	$\mathrm{H}_{2} \mathrm{CO}_{3}$	4.4×10^{-7}	$\mathrm{HCO}_{3}{ }^{-}$	2.3×10^{-8}
Dihydrogen phosphate ion	$\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$	6.2×10^{-8}	$\mathrm{HPO}_{4}{ }^{2-}$	1.6×10^{-7}
Hydrogen sulfite ion	$\mathrm{HSO}_{3}{ }^{-}$	6.0×10^{-8}	$\mathrm{SO}_{3}{ }^{2-}$	1.7×10^{-7}
Hypochlorous acid	HClO	2.8×10^{-8}	ClO^{-}	3.6×10^{-7}
Hydrocyanic acid	HCN	5.8×10^{-10}	CN^{-}	1.7×10^{-5}
Ammonium ion	$\mathrm{NH}_{4}{ }^{+}$	5.6×10^{-10}	NH_{3}	1.8×10^{-5}
Tetraaquazinc(II) ion	$\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}{ }^{2+}$	3.3×10^{-10}	$\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathrm{OH}^{+}$	3.0×10^{-5}
Hydrogen carbonate ion	$\mathrm{HCO}_{3}{ }^{-}$	4.7×10^{-11}	$\mathrm{CO}_{3}{ }^{2-}$	2.1×10^{-4}
Hydrogen phosphate ion	$\mathrm{HPO}_{4}{ }^{2-}$	4.5×10^{-13}	$\mathrm{PO}_{4}{ }^{3-}$	2.2×10^{-2}
$\mathrm{HB}(a q) \rightleftharpoons \mathrm{H}^{+}(a q)+\mathrm{B}^{-}(a q)$			$\left[\mathrm{H}^{+}\right] \times\left[\mathrm{B}^{-}\right]$	
$\mathrm{B}^{-}(a q)+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HB}(a q)+\mathrm{OH}^{-}(a q)$			$[\mathrm{HB}] \times\left[\mathrm{OH}^{-}\right]$	

pK_{a}

- $\mathrm{pK}_{\mathrm{a}}=-\log \mathrm{K}_{\mathrm{a}}$
- The smaller pK_{a} is, the stronger the acid
- pK_{a} follows the trend for pH

Example 13.4

Example 13.4 Consider acetic acid, $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$, and the hydrated zinc cation,

 $\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}{ }^{2+}$.(a) Write equations to show why these species are acidic.
(b) Which is the stronger acid?
(c) What is the $\mathrm{p} K_{\mathrm{a}}$ of $\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}{ }^{2+}$?

Strategy In (a), note that in both cases a proton is transferred to a water molecule. The products are an $\mathrm{H}_{3} \mathrm{O}^{+}$ion and the conjugate base of the weak acid. In (b) use Table 13.2 to find which weak acid has the larger K_{a}. In (c) use the equation

$$
\mathrm{p} K_{\mathrm{a}}=-\log _{10} K_{\mathrm{a}}
$$

SOLUTION

(a) $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(a q)+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}(a q)$

$$
\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}{ }^{2+}(a q)+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})^{+}(a q)
$$

(b) $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\left(K_{\mathrm{a}}=1.8 \times 10^{-5}\right)$ is stronger than $\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}{ }^{2+}\left(K_{\mathrm{a}}=3.3 \times 10^{-10}\right)$.
(c) $\mathrm{p} K_{\mathrm{a}}=-\log _{10}\left(3.3 \times 10^{-10}\right)=9.48$

Example 13.5

Example 13.5 Aspirin, a commonly used pain reliever, is a weak organic acid

 whose molecular formula may be written as $\mathrm{HC}_{9} \mathrm{H}_{7} \mathrm{O}_{4}$. An aqueous solution of aspirin has total volume 350.0 mL and contains 1.26 g of aspirin. The pH of the solution is found to be 2.60. Calculate K_{a} for aspirin.Strategy The approach used is very similar to that of Chapter 12, except that concentrations in moles per liter replace partial pressures. Note that you readily calculate:

- the original concentration of $\mathrm{HC}_{9} \mathrm{H}_{7} \mathrm{O}_{4}(\mathrm{MM}=180.15 \mathrm{~g} / \mathrm{mol})$

$$
\left[\mathrm{HC}_{9} \mathrm{H}_{7} \mathrm{O}_{4}\right]_{\mathrm{o}}=\frac{1.26 \mathrm{~g}}{0.3500 \mathrm{~L}} \times \frac{1 \mathrm{~mol}}{180.15 \mathrm{~g}}=0.0200 \mathrm{M}
$$

- the equilibrium concentration of H^{+}

$$
\left[\mathrm{H}^{+}\right]_{\mathrm{eq}}=10^{-2.60}=2.5 \times 10^{-3} \mathrm{M}
$$

Your task is to calculate the acid equilibrium constant:

$$
\mathrm{HC}_{9} \mathrm{H}_{7} \mathrm{O}_{4}(a q) \rightleftharpoons \mathrm{H}^{+}(a q)+\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{O}_{4}^{-}(a q) \quad K_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right] \times\left[\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{O}_{4}^{-}\right]}{\left[\mathrm{HC}_{9} \mathrm{H}_{7} \mathrm{O}_{4}\right]}
$$

Example 13.5, (Cont'd)

SOLUTION From the chemical equation for the ionization of the weak acid, it should be clear that 1 mol of $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{O}_{4}^{-}$is produced and 1 mol of $\mathrm{HC}_{9} \mathrm{H}_{7} \mathrm{O}_{4}$ is consumed for every mole of H^{+}produced. It follows that

$$
\Delta\left[\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{O}_{4}^{-}\right]=\Delta\left[\mathrm{H}^{+}\right] \quad \Delta\left[\mathrm{HC}_{9} \mathrm{H}_{7} \mathrm{O}_{4}\right]=-\Delta\left[\mathrm{H}^{+}\right]
$$

Originally, there is essentially no H^{+}(ignoring the slight ionization of water). The same holds for the anion $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{O}_{4}^{--}$; the only species present originally is the weak acid, $\mathrm{HC}_{9} \mathrm{H}_{7} \mathrm{O}_{4}$, at a concentration of 0.0200 M .

Putting this information together in the form of a table,

	$\mathrm{HC}_{9} \mathrm{H}_{7} \mathrm{O}_{4}(a q)$	$\rightleftharpoons \mathrm{H}^{+}(a q)+\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{O}_{4}{ }^{-}(a q)$	
[]$_{0}$	0.0200	0.0000	0.0000
$\Delta[]$	-0.0025	+0.0025	+0.0025
[]$_{\text {eq }}$	0.0175	0.0025	0.0025

(Numbers in color are those given or implied in the statement of the problem; the other numbers are deduced using the ionization equation printed above the table. The symbols [] ${ }_{0}$ and [$]_{\text {eq }}$ refer to original and equilibrium concentrations, respectively.)

All the information needed to calculate K_{a} is now available,

$$
K_{\mathrm{a}}=\frac{\left(2.5 \times 10^{-3}\right)^{2}}{0.0175}=3.6 \times 10^{-4}
$$

Reality Check Aspirin is a relatively strong weak acid; it would be located near the top of Table 13.2.

Percent Ionization

- The percent ionization of a weak acid is defined as

$$
\% \text { ionization }=\frac{\left[H^{+}\right]_{e_{\text {euilibrium }}}}{[H B]_{\text {initial }}} \times 100 \%
$$

- For the calculation in example 13.5, the percent ionization is about 12 \%
- Note that the percent ionization depends on the molarity of the weak acid

Figure 13.8-\% Ionization and Concentration

Example 13.6

Example 13.6 Conceptual

In the box below, which has a volume of 0.50 L , the symbol \bigcirc represents 0.10 mol of a weak acid, HB . The symbol represents 0.10 mol of the conjugate base, B^{-}. Hydronium ions and water molecules are not shown. What is the percent ionization of the acid?

SOLUTION There must, originally, have been five red circles. So,

$$
\% \text { ionization }=\frac{1}{5} \times 100=20 \%
$$

The other information given in the statement of the problem is irrelevant.

Calculating $\left[\mathrm{H}^{+}\right]$in a Water Solution of a Weak Acid

- We can use the process for calculating equilibrium pressure for gaseous reactions that we looked at in Chapter 12 to calculate the equilibrium concentration of $\left[\mathrm{H}^{+}\right]$for a weak acid
- The relationship between [HB], $\left[\mathrm{H}^{+}\right]$and $[\mathrm{B}-]$ is given in the equilibrium expression itself

Algebra Review - Quadratic Equations

- Recall that for a quadratic equation in the form

$$
a x^{2}+b x+c=0
$$

- The roots are

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Example 13.7

Example 13.7 Nicotinic acid, $\mathrm{HC}_{6} \mathrm{H}_{4} \mathrm{O}_{2} \mathrm{~N}\left(K_{\mathrm{a}}=1.4 \times 10^{-5}\right)$ is another name for

 niacin, an important member of the vitamin B group. Determine $\left[\mathrm{H}^{+}\right]$in a solution prepared by dissolving 3.0 g of nicotinic acid $(\mathrm{MM}=123.11 \mathrm{~g} / \mathrm{mol})$, HNic, in enough water to form 245 mL of solution.Strategy First, determine the molarity of the prepared solution:

$$
\frac{3.0 \mathrm{~g} \mathrm{HNic}}{0.245 \mathrm{~L}} \times \frac{1 \mathrm{~mol}}{123.11 \mathrm{~g}}=0.10 \mathrm{M}
$$

Next, set up an equilibrium table similar to the one in the previous example. To accomplish that, note

- the original concentrations of $\mathrm{HNic}, \mathrm{H}^{+}$, and Nic^{-}are $0.10 \mathrm{M}, 0.00 \mathrm{M}$, and 0.00 M , respectively, ignoring, tentatively at least, the H^{+}ions from the ionization of water.
- the changes in concentration are related by the coefficients of the balanced equation, all of which are 1 :

$$
\Delta\left[\mathrm{Nic}^{-}\right]=\Delta\left[\mathrm{H}^{+}\right] \quad \Delta[\mathrm{HNic}]=-\Delta\left[\mathrm{H}^{+}\right]
$$

Letting $\Delta\left[\mathrm{H}^{+}\right]=x$, it follows that $\Delta\left[\mathrm{Nic}^{-}\right]=x ; \Delta[\mathrm{HNic}]=-x$. This information should enable you to express the equilibrium concentration of all species in terms of x. The rest is algebra; substitute into the expression for K_{a} and solve for $x=\left[\mathrm{H}^{+}\right]$.

Example 13.7, (Cont'd)

SOLUTION Setting up the table,

	$\mathrm{HNic}(a q) \rightleftharpoons \mathrm{H}^{+}(a q)+\mathrm{Nic}^{-}(a q)$		
[]$_{0}$	0.10	0.00	0.00
$\Delta[]$	$-x$	$+x$	$+x$
[]$_{\text {eq }}$	$0.10-x$	x	x

Substituting into the expression for K_{a},

$$
K_{\mathrm{a}}=\frac{(x)(x)}{0.10-x}=1.4 \times 10^{-5}
$$

This is a quadratic equation. It could be rearranged to the form $a x^{2}+b x+c=0$ and solved for x, using the quadratic formula. Such a procedure is time-consuming and, in this case, unnecessary. Nicotinic acid is a weak acid, only slightly ionized in water. The equilibrium concentration of HNic, $0.10-x$, is probably only very slightly less than its original concentration, 0.10 M . So let's make the approximation $0.10-x \approx 0.10$. This simplifies the equation written above:

$$
\frac{x^{2}}{}=1.4 \times 10^{-5}
$$

Approximations Used in Calculations

- The value of K_{a} is usually known no more accurately than about $\pm 5 \%$
- When solving for the unknowns used to work the equilibrium problem, for the expression

$$
K_{a}=\frac{x^{2}}{a-x}
$$

- Where a is the initial concentration of weak acid, you can neglect x in the denominator if doing so does not introduce an error

$$
\begin{aligned}
& \text { if } \frac{x}{a} \leq 0.05, \text { then } \\
& a-x \approx a
\end{aligned}
$$ of more than 5%, i.e.,

Approximations and Percent Ionization

- When

$$
\frac{x}{a}=\frac{\left[H^{+}\right]_{e q}}{[H B]_{o}}
$$

- Multiplying by 100% will give the percent ionization:

$$
\frac{x}{a} \%=\frac{\left[H^{+}\right]_{e q}}{[H B]_{o}} \times 100 \%
$$

- If the percent ionization is 5% or less, you may make the approximation.
- If the percent ionization is greater than 5%, the quadratic formula or the successive approximation method is required

Example 13.8

Example 13.8 Calculate $\left[\mathrm{H}^{+}\right]$in a 0.100 M solution of nitrous acid, HNO_{2}, for

 which $K_{\mathrm{a}}=6.0 \times 10^{-4}$.Strategy The setup is identical with that in Example 13.7. However, you will find, on solving for x, that $x>0.050 a$, so the approximation $a-x \approx a$ fails. The simplest way to proceed is to use the calculated value of x to obtain a better estimate of $\left[\mathrm{HNO}_{2}\right]$, then solve again for $\left[\mathrm{H}^{+}\right]$. An alternative is to use the quadratic formula. (This is a particularly shrewd choice if you have a calculator that can be programmed to solve quadratic equations.)

SOLUTION Proceeding as in Example 13.7, you arrive at the equation

$$
K_{\mathrm{a}}=\frac{x^{2}}{0.100-x}=6.0 \times 10^{-4}
$$

Making the same approximation as before, $0.100-x \approx 0.100$,

$$
\begin{gathered}
x^{2}=0.100 \times 6.0 \times 10^{-4}=6.0 \times 10^{-5} \\
x=7.7 \times 10^{-3} \approx\left[\mathrm{H}^{+}\right]
\end{gathered}
$$

To check the validity of the approximation, note that

Example 13.8, (Cont'd)

value of x just calculated, 0.0077 , to find a more exact value for the concentration of HNO_{2} :

$$
\left[\mathrm{HNO}_{2}\right]=0.100-0.0077=0.092 \mathrm{M}
$$

Substituting in the expression for K_{a},

$$
\begin{aligned}
K_{\mathrm{a}}=\frac{x^{2}}{0.092} & =6.0 \times 10^{-4} \quad x^{2}=5.5 \times 10^{-5} \\
x & =7.4 \times 10^{-3} M \approx\left[\mathrm{H}^{+}\right]
\end{aligned}
$$

This value is closer to the true $\left[\mathrm{H}^{+}\right]$, because 0.092 M is a better approximation for [HNO_{2}] than was 0.100 M . If you're still not satisfied, you can go one step further. Using 7.4×10^{-3} for x instead of 7.7×10^{-3}, you can recalculate $\left[\mathrm{HNO}_{2}\right]$ and solve again for x. If you do, you will find that your answer does not change. In other words, you have gone about as far as you can go.

Example 13.8, (Cont'd)

(2) The quadratic formula. This gives an exact solution for x but is more timeconsuming. Rewrite the equation

$$
\frac{x^{2}}{0.100-x}=6.0 \times 10^{-4}
$$

in the form $a x^{2}+b x+c=0$. Doing this,

$$
x^{2}+\left(6.0 \times 10^{-4}\right) x-\left(6.0 \times 10^{-5}\right)=0
$$

thus $a=1 ; b=6.0 \times 10^{-4} ; c=-6.0 \times 10^{-5}$. Applying the quadratic formula,

$$
\begin{aligned}
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-6.0 \times 10^{-4} \pm \sqrt{\left(6.0 \times 10^{-4}\right)^{2}+\left(24.0 \times 10^{-5}\right)}}{2}
\end{aligned}
$$

If you carry out the arithmetic properly, you should get two answers for x :

$$
x=7.4 \times 10^{-3} M \quad \text { and } \quad-8.0 \times 10^{-3} M
$$

The second answer is physically ridiculous; the concentration of H^{+}cannot be a negative gurantity The firct ancwer is the came nne nhtained hy the methed of curceccive

Polyprotic Weak Acids

- Acids containing more than one ionizable hydrogen are called polyprotic
- The anion formed in one step produces another H^{+}in a successive ionization step
- The equilibrium constant becomes smaller with each successive step

Triprotic Acid

- Phosphoric acid
- $\mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq}) \quad \mathrm{K}_{\mathrm{a} 1}$
- $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(\mathrm{aq}) \stackrel{\mathrm{H}}{ }{ }^{+}(\mathrm{aq})+\mathrm{HPO}_{4}{ }^{2-}(\mathrm{aq}) \mathrm{K}_{\mathrm{a} 2}$
- $\mathrm{HPO}_{4}{ }^{2-}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{PO}_{4}{ }^{3-}(\mathrm{aq})$
$\mathrm{K}_{\mathrm{a} 3}$
- $\mathrm{K}_{\mathrm{a} 1}>\mathrm{K}_{\mathrm{a} 2}>\mathrm{K}_{\mathrm{a} 3}$
- With each successive step, the acid becomes progressively weaker

Table 13.3

Table 13.3 Equilibrium Constants for Some Weak Polyprotic Acids at $25^{\circ} \mathrm{C}$

Acid	Formula	$K_{\mathrm{a} 1}$	$K_{\mathrm{a} 2}$	$K_{\mathrm{a} 3}$
Carbonic acid*	$\mathrm{H}_{2} \mathrm{CO}_{3}$	4.4×10^{-7}	4.7×10^{-11}	
Oxalic acid	$\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$	5.9×10^{-2}	5.2×10^{-5}	
Phosphoric acid	$\mathrm{H}_{3} \mathrm{PO}_{4}$	7.1×10^{-3}	6.2×10^{-8}	4.5×10^{-13}
Sulfurous acid	$\mathrm{H}_{2} \mathrm{SO}_{3}$	1.7×10^{-2}	6.0×10^{-8}	

*Carbonic acid is a water solution of carbon dioxide:

$$
\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})
$$

The ionization constants listed are calculated assuming that all the carbon dioxide that dissolves is in the form of $\mathrm{H}_{2} \mathrm{CO}_{3}$.

Example 13.9

Example 13.9
 The distilled water you use in the laboratory is slightly acidic

 because of dissolved CO_{2}, which reacts to form carbonic acid, $\mathrm{H}_{2} \mathrm{CO}_{3}$. Calculate the pH of a 0.0010 M solution of $\mathrm{H}_{2} \mathrm{CO}_{3}$.Strategy In principle, there are two different sources of H^{+}ions from $\mathrm{H}_{2} \mathrm{CO}_{3}$:

$$
\begin{array}{rll}
\mathrm{H}_{2} \mathrm{CO}_{3}(a q) & \rightleftharpoons \mathrm{H}^{+}(a q)+\mathrm{HCO}_{3}{ }^{-}(a q) & \\
K_{\mathrm{a} 1}=4.4 \times 10^{-7} \\
\mathrm{CCO}_{3}{ }^{-}(a q) \rightleftharpoons \mathrm{H}^{+}(a q)+\mathrm{CO}_{3}{ }^{2-}(a q) & K_{\mathrm{a} 2}=4.7 \times 10^{-11}
\end{array}
$$

In practice, essentially all the H^{+}ions come from the first reaction, because $K_{\mathrm{a} 1}$ is so much larger than $K_{\mathrm{a} 2}$. In other words, $\mathrm{H}_{2} \mathrm{CO}_{3}$ can be treated as if it were a weak monoprotic acid.

SOLUTION For the first reaction, $\mathrm{H}_{2} \mathrm{CO}_{3}(a q) \rightleftharpoons \mathrm{H}^{+}(a q)+\mathrm{HCO}_{3}{ }^{-}(a q)$

$$
K_{\mathrm{a} 1}=\frac{x^{2}}{0.0010-x}=4.4 \times 10^{-7} \quad\left(x=\left[\mathrm{H}^{+}\right]=\left[\mathrm{HCO}_{3}^{-}\right]\right)
$$

Making the approximation $0.0010-\mathrm{x} \approx 0.0010$ and solving gives

$$
\begin{aligned}
& x=\left(4.4 \times 10^{-10}\right)^{1 / 2}=2.1 \times 10^{-5} \\
& \mathrm{pH}=-\log _{10}\left(2.1 \times 10^{-5}\right)=4.68
\end{aligned}
$$

Note that the solution is indeed acidic, with a pH considerably less than 7 . Notice that since

$$
\left[\mathrm{H}^{+}\right]=\left[\mathrm{HCO}_{3}{ }^{-}\right] \quad \text { and } \quad \frac{\left[\mathrm{H}^{+}\right] \times\left[\mathrm{CO}_{3}{ }^{2-}\right]}{\left[\mathrm{HCO}_{3}^{-}\right]}=K_{\mathrm{a} 2}=4.7 \times 10^{-11}
$$

it follows that $\left[\mathrm{CO}_{3}{ }^{2-}\right]=K_{\mathrm{a} 2}=4.7 \times 10^{-11}$.

Weak Bases and their Equilibrium Constants

- Types of weak bases
- Molecules
- Ammonia, NH_{3}, and amines
- $\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
- Anions
- Anions derived from weak acids are weak bases
- $\mathrm{I}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HI}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$

Example 13.10

Example 13.10 Write an equation to explain why each of the following produces a

 basic water solution.(a) NO_{2}
(b) $\mathrm{Na}_{2} \mathrm{CO}_{3}$
(c) KHCO_{3}

Strategy In each case, the anion reacts reversibly with a water molecule, picking up a proton from it. Two species are formed: the OH^{-}ion and the conjugate acid of the anion.

SOLUTION

(a) $\mathrm{NO}_{2}^{-}(a q)+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HNO}_{2}(a q)+\mathrm{OH}^{-}(a q)$
(b) $\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \rightleftharpoons \mathrm{HCO}_{3}^{-}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
(c) $\mathrm{HCO}_{3}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$

Weak Base Equilibrium Constant

- $\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O} \hat{\mathrm{U}} \mathrm{NH}_{4}{ }^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
- The base equilibrium constant, K_{b} is

$$
K_{b}=\frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{3}\right]}
$$

- For a generic weak base where
- $\mathrm{B}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O} \hat{\mathrm{U}} \mathrm{HB}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$

$$
K_{b}=\frac{\left[H B^{+}\right]\left[\mathrm{OH}^{-}\right]}{[B]}
$$

K_{b} by the Numbers

- As K_{b} becomes larger, base strength increases
- As with acids and K_{a}, we can define a pK_{b} :
- $\mathrm{pK}_{\mathrm{b}}=-\log \mathrm{K}_{\mathrm{b}}$
- As pK_{b} becomes smaller, base strength increases

Calculation of $\left[\mathrm{OH}^{-}\right]$in a Weak Base Solution

- The process of calculating the $\left[\mathrm{OH}^{-}\right]$in a weak base solution is the same as the process for calculating $\left[\mathrm{H}^{+}\right]$in a weak acid solution

Example 13.11

Example 13.11 Graded

Consider sodium hypochlorite, NaOCl , the main component in household bleach. The hypochlorite ion, OCl^{-}, has $K_{\mathrm{b}}=3.6 \times 10^{-7}$. A solution is prepared by dissolving 12.0 g of $\mathrm{NaOCl}(\mathrm{MM}=74.45 \mathrm{~g} / \mathrm{mol})$ in enough water to make 835 mL of solution.

* (a) What is the pH of the solution?
** (b) Household bleach is $5.25 \% \mathrm{NaOCl}$ by mass. Assuming that its density is
$1.00 \mathrm{~g} / \mathrm{mL}$, is household bleach more alkaline than the prepared solution?

Strategy

(a) The procedure is entirely analogous to that in Example 13.7. Take $\left[\mathrm{OH}^{-}\right]=x$ and set up an equilibrium table, ignoring OH^{-}ions present in pure water. Solve for x, making the usual approximation. Then calculate pOH and finally the pH . You should obtain a pH greater than 7 .
(b) Assume 100.0 g of solution, and determine $[\mathrm{NaOCl}]$, which is the same as $\left[\mathrm{OCl}^{-}\right]$. Follow the strategy above for (a), and compare the two pH values obtained.

Example 13.11, (Cont'd)

SOLUTION

(a) First, we obtain $[\mathrm{NaOCl}]$, which is equal to $\left[\mathrm{OCl}^{-}\right]$:

$$
[\mathrm{NaOCl}]=\frac{12.0 \mathrm{~g}}{0.835 \mathrm{~L}} \times \frac{1 \mathrm{~mol}}{74.45 \mathrm{~g}}=0.193 \mathrm{M}
$$

The equilibrium table is

$$
\mathrm{OCl}^{-}(a q)+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HOCl}(a q)+\mathrm{OH}^{-}(a q)
$$

[]$_{0}$	0.193	0.00	0.00
$\Delta[]$	$-x$	$+x$	$+x$
[]$_{\text {eq }}$	$0.193-x$	x	x

Substituting into the equilibrium-constant expression, we find

$$
K_{\mathrm{b}}=\frac{x^{2}}{0.193-x}=3.6 \times 10^{-7}
$$

Assuming $0.193-x \approx 0.193$ and solving for x,

Example 13.11, (Cont'd)

Since the \% ionization,

$$
\left(\frac{2.6 \times 10^{-4}}{0.193}\right) \times 100=0.14 \%<5.00 \%
$$

the approximation is justified.

$$
\begin{gathered}
{\left[\mathrm{OH}^{-}\right]=2.6 \times 10^{-4}} \\
\mathrm{pOH}=-\log _{10} 2.6 \times 10^{-4}=3.59 \\
\mathrm{pH}=14.00-3.59=10.41
\end{gathered}
$$

(b) If we assume 100.0 g of solution, then we can say that there are 5.25 g NaOCl in 100.0 mL of solution (since density is assumed to be $1.00 \mathrm{~g} / \mathrm{mL}$). Thus,

$$
[\mathrm{NaOCl}]=\left[\mathrm{OCl}^{-}\right]=\frac{5.25 \mathrm{~g}}{0.100 \mathrm{~L}} \times \frac{1 \mathrm{~mol}}{74.4 \mathrm{~g}}=0.706 \mathrm{M}
$$

Substituting into an equilibrium table (as in part (a)), we should get

$$
K_{\mathrm{b}}=\frac{x^{2}}{0.706-x}=3.6 \times 10^{-7}
$$

Again assıming $0.706-x \approx 0.706$ and solving for x. we obtain

Relation between K_{a} and K_{b}

- Consider the relation between a conjugate acid-base pair
- $\mathrm{HB}(\mathrm{aq}) \geqslant \mathrm{H}^{+}(\mathrm{aq})+\mathrm{B}^{-}(\mathrm{aq}) \quad \mathrm{K}_{1}=\mathrm{K}_{\mathrm{a}}$ of HB
- $\mathrm{B}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{HB}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \mathrm{K}_{\mathrm{II}}=\mathrm{K}_{\mathrm{b}}$ of B^{-}
- These add to
- $\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \quad \mathrm{K}_{\text {III }}=\mathrm{K}_{\mathrm{w}}$
- Since $K_{I} K_{I I}=K_{\text {III }}, K_{a} K_{b}=K_{w}$
- for a conjugate acid base pair only
- In log form, $\mathrm{pK}_{\mathrm{a}}+\mathrm{pK}_{\mathrm{b}}=\mathrm{pK}_{\mathrm{w}}=14$

Figure 13.4

© Brooks/Cole, Cengage Learning

Notes on Acid-Base Strength

- K_{a} and K_{b} are inversely related
- The larger K_{a} is, the smaller K_{b} is
- Features
- Brønsted-Lowry acids
- Strong acids
- Weak acids
- Acids weaker than water (conjugates of strong bases)
- Brønsted-Lowry bases
- Strong bases
- Weak bases
- Bases weaker than water (conjugates of strong acids)

Hydride ion

- Reaction of water with CaH_{2}
- H^{-}is the conjugate base of H_{2}, a very weak acid
- As a result, H^{-}is an extremely strong base

Acid-Base Properties of Solutions of Salts

- A salt is an ionic solid containing a cation other than H^{+}and an anion other than OH^{-}
- We can predict whether a salt will be acidic, basic or neutral by

1. Deciding what effect the cation has on water

- Is it acidic or is it neutral?

2. Deciding what effect the anion has on water

- Is it basic or is it neutral?

3. Combining the two effects to decide the behavior of the salt in water

Cations

- Weak acid or spectator ion?
- Most cations are acidic
- These will change the pH by more than 0.5 pH units in a 0.1 M solution
- Exceptions - these are spectators
- Alkali metal cations
- Heavier alkaline earth cations $\left(\mathrm{Ca}^{2+}, \mathrm{Sr}^{2+}, \mathrm{Ba}^{2+}\right)$

Anions

- Weak base or spectator ion?
- Many anions are weak bases
- These will change the pH by more than 0.5 pH units at 0.1 M
- Exceptions - these are spectators
- Anions of very strong acids: $\mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{I}^{-}, \mathrm{NO}_{3}^{-}, \mathrm{ClO}_{4}^{-}$

Sodium Chloride Solution

Table 13.5

Table 13.5	Acid-Base Properties of lons* in Water Solution					
	Spectator		Basic		Acidic	
	Cl^{-}	$\mathrm{NO}_{3}{ }^{-}$	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}$	$\mathrm{CO}_{3}{ }^{2-}$		
Anion	Br^{-}	$\mathrm{ClO}_{4}{ }^{-}$		$\mathrm{PO}_{4}{ }^{3-}$		
	1^{-}		Many others			
Cation	Li+	Ca^{2+}			NH_{4}^{+}	Al^{3+}
	Na^{+}	Sr^{2+}			Mg^{2+}	
	K^{+}	Ba^{2+}			Transit	l ions

*For the acid-base properties of amphiprotic anions such as $\mathrm{HCO}_{3}{ }^{-}$or $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$, see the discussion at the end of this section.

Salts: Acidic, Basic or Neutral

- By comparing the K_{a} of an acidic cation with the K_{b} of a basic anion, the salt of both can be classified as acidic, basic or neutral
- If $\mathrm{K}_{\mathrm{a}}>\mathrm{K}_{\mathrm{b}}$, the salt is acidic
- $\mathrm{NH}_{4} \mathrm{~F}, \mathrm{~K}_{\mathrm{a}}=5.6 \times 10^{-10} ; \mathrm{K}_{\mathrm{b}}=1.4 \times 10^{-11}$
- If $K_{b}>K_{a}$, the salt is basic
- $\mathrm{NH}_{4} \mathrm{ClO}, \mathrm{K}_{\mathrm{a}}=5.6 \times 10^{-10} ; \mathrm{K}_{\mathrm{b}}=3.6 \times 10^{-7}$

Amphiprotic Anions

- HCO_{3}^{-}
- $K_{a}=4.7 \times 10^{-11}$
- $K_{b}=2.3 \times 10^{-8}$
- Because $\mathrm{K}_{\mathrm{b}}>\mathrm{K}_{\mathrm{a}}$, a solution of NaHCO_{3} will be basic

Key Concepts

1. Classify a substance as a Brønsted-Lowry acid or base and write the net ionic equation to support the classification
2. Given $\left[\mathrm{H}^{+}\right],\left[\mathrm{OH}^{-}\right], \mathrm{pH}$ or pOH , calculate the three other quantities
3. Given the pH and original concentration of a weak acid, calculate K_{a}
4. Given the K_{a} and original concentration of a weak acid, calculate $\left[\mathrm{H}^{+}\right]$
5. Given the K_{b} and original concentration of a weak base, calculate $\left[\mathrm{OH}^{-}\right]$

Key Concepts, (Cont'd)

6. Given K_{a} for a weak acid, calculate K_{b} for its conjugate base (or vice-versa).
7. Predict whether a salt will be acidic, basic or neutral.
