

Chemistry

Principles and Reaction

Sixth Edition

Masterton | Hurley

William L Masterton Cecile N. Hurley

http://academic.cengage.com/chemistry/masterton

Chapter 13 Acids and Bases

Edward J. Neth • University of Connecticut

Outline

- 1. Brønsted-Lowry acid-base model
- 2. The ion product of water
- 3. pH and pOH
- 4. Weak acids and their equilibrium constants
- 5. Weak bases and their equilibrium constants
- 6. Acid-base properties of salt solutions

Review from Chapter 4

- The Arrhenius definition of acid and base
 - Acids produce H⁺ in water
 - Bases produce OH⁻ in water
 - H⁺ from acids combines with OH⁻ from bases to produce water in a reaction called a neutralization

Brønsted-Lowry Acid-Base Model

- Brønsted-Lowry
 - Johannes Brønsted (1879-1947)
 - Thomas Lowry (1874-1936)
- Brønsted-Lowry model focuses on the *reaction that* takes place between acid and base, rather than on the independent nature of the acid or base, as the Arrhenius model does
 - Acids donate H⁺ to bases
 - Bases accept H⁺ from acids

The Nature of H⁺

- The H⁺ ion is the medium of exchange in a Brønsted-Lowry reaction
 - H⁺ can also be called a proton
 - Acid-base reactions involve proton exchange

Conjugate Pairs

- The species that forms when a proton is removed from an acid is called the *conjugate base* of the acid
 - If the acid is HB, the conjugate base is B⁻
- The only difference between the members of a conjugate acid-base pair is the position of the proton
- A species that can either accept or donate a proton is called amphiprotic
 - Consider water:
 - OH- B H₂O à H₃O+

Remove H⁺ Add H⁺

Examples of Conjugate Acid-Base Pairs

Conjugate Acid	Conjugate Base
HF	F-
HSO ₄ -	SO ₄ ²⁻
NH ₄ +	NH ₃

The Hydronium Ion

- Another way to write the H⁺ ion is as H_3O^+
 - H_3O^+ is the hydronium ion
 - H⁺ exists in water as hydronium ion, since H⁺ itself would not be stable in water
 - Depending on the reason for writing the reaction, either H⁺ or H₃O⁺ can be used, and interchangeably
 - The only difference is the inclusion or exclusion of the H₂O molecule

Example 13.1

Example 13.1

- (a) What is the conjugate base of HNO_2 ? The conjugate acid of F^- ?
- (b) The HCO₃⁻ ion, like the H₂O molecule, is amphiprotic. What is its conjugate base? Its conjugate acid?

Strategy To form a conjugate base, remove H^+ ; the effect is to lower the number of hydrogen atoms by one and lower the charge by one unit. Conversely, a conjugate acid is formed by adding H^+ ; this adds a H atom and increases the charge by one unit.

SOLUTION

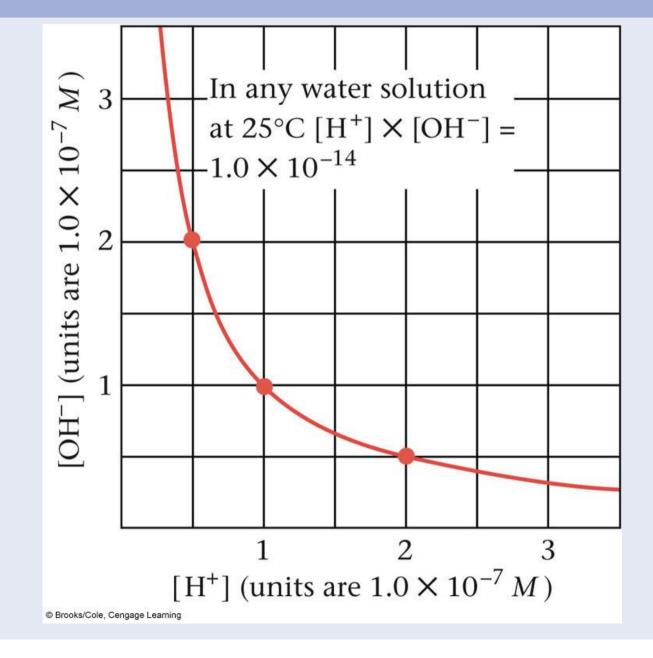
(a) NO_2^- ; HF (b) CO_3^{2-} ; H₂CO₃

The Ion Product of Water

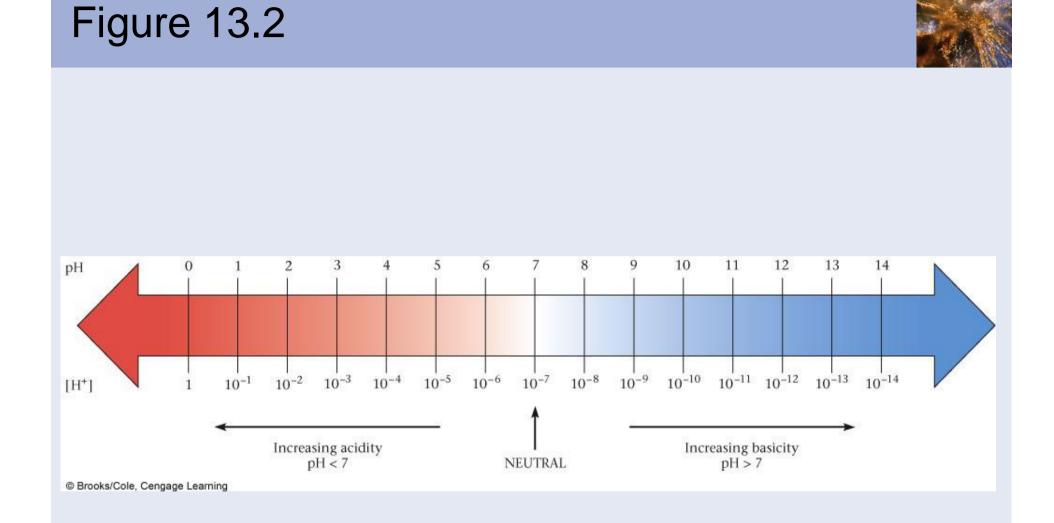
- Water can react with itself in a reaction called autoionization
- Water can react with itself in an acid-base reaction:
 - $H_2O + H_2O = H_3O^+ (aq) + OH^- (aq)$
- An alternate way to write the reaction is:
 - H₂O *⇒* H⁺ (aq) + OH⁻ (aq)

Equilibrium and the Auto-Ionization of Water

- $H_2O \rightleftharpoons H^+(aq) + OH^-(aq)$
 - Recall that concentrations can be used to write equilibrium constant expressions
 - K for this reaction is [H⁺][OH⁻]
 - This K is called the *ion product constant of water, K_w*
 - K_w = [H⁺][OH⁻]
 - At 25 $^{\circ}$ C, K_w = 1.0 X 10⁻¹⁴


Concentrations of H⁺ and OH⁻ in pure water

- In pure water, [H⁺] = [OH⁻] = 1.0 X 10⁻¹⁴
 - $[H^+] = 1.0 \times 10^{-7}$
 - [OH⁻] = 1.0 X 10⁻⁷
 - When the two concentrations are equal, the solution is said to be neutral
 - If [H⁺] > 1.0 X 10⁻⁷, then $[OH^-] < 1.0 \times 10^{-7}$ and the solution is acidic
 - If $[OH^-] > 1.0 \times 10^{-7}$, then $[H^+] < 1.0 \times 10^{-7}$ and the solution is basic


pН

Defining equation for pH

 $pH = -\log[H^+]$ $[H^+] = anti \log(-pH) = 10^{-pH}$

- The higher the pH, the less acidic the solution
- The lower the pH, the more acidic the solution

рОН

• Defining equation for pH

 $pOH = -log[OH^{-}]$ $[OH^{-}] = antilog[-pOH] = 10^{-pOH}$

- The higher the pOH, the more basic the solution
- The lower the pOH, the more acidic the solution

Relationship between pH and pOH

$[H^+][OH^-] = 1.0 x 10^{-14}$ pH + pOH = 14

Example 13.2 Graded

Calculate, at 25°C

*(a) the [H⁺] and pH of a tap-water sample in which [OH⁻] = 2.0 × 10⁻⁷.
**(b) the [H⁺] and [OH⁻] of human blood at pH 7.40.
***(c) the pOH of a solution in which [H⁺] = 5.0[OH⁻].

Example 13.2, (Cont'd)

SOLUTION

(a)
$$[H^+] = \frac{1.0 \times 10^{-14}}{2.0 \times 10^{-7}} = 5.0 \times 10^{-8} M$$

$$pH = -\log_{10}(5.0 \times 10^{-8})$$

You should find on your calculator that $\log_{10}(5.0 \times 10^{-8})$ is -7.30. Hence, pH = 7.30.

- (b) Because the pH is 7.40, $[H^+] = 10^{-7.40}$. To find $[H^+]$, enter -7.40 on your calculator. Then either—
 - punch the 10^x key, if you have one, or
 - punch the **INV** and then the **LOG** key

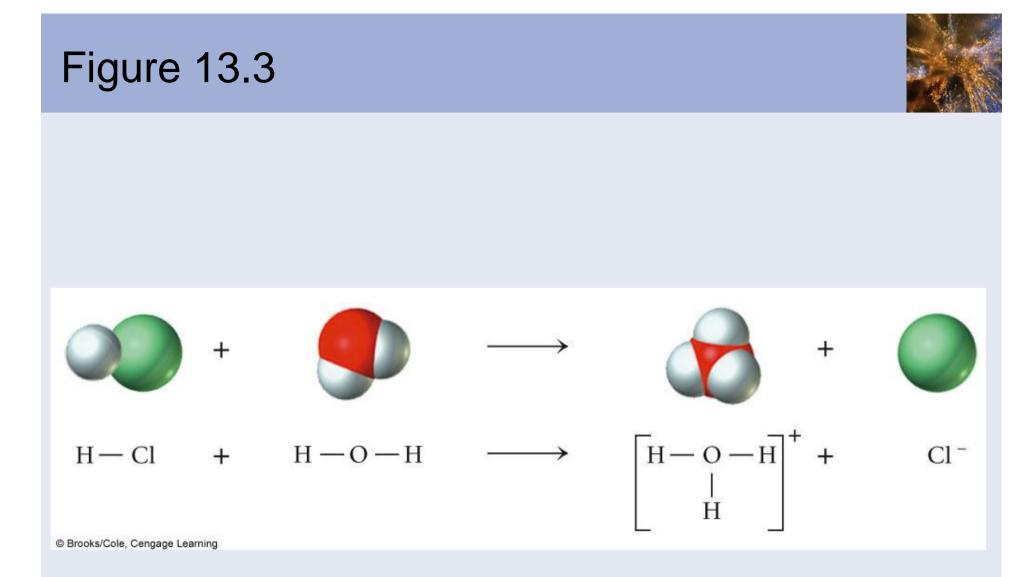
Either way, you should find that $[H^+] = 4.0 \times 10^{-8} M$. Knowing $[H^+]$, the concentration of OH⁻ is calculated from Equation 13.1.

$$[OH^{-}] = \frac{1.0 \times 10^{-14}}{4.0 \times 10^{-8}} = 2.5 \times 10^{-7} M.$$

(c) Substitute into the K_W expression to find $[OH^-]$ and then convert to pOH.

$$5.0[OH^{-}] \times [OH^{-}] = 1.0 \times 10^{-14}$$
$$[OH^{-}]^{2} = \frac{1.0 \times 10^{-14}}{5.0}; \qquad [OH^{-}] = 4.5 \times 10^{-8} M$$
$$pOH = -\log_{10} (4.5 \times 10^{-8}) = 7.35$$

pH and Blood



- From the previous example, it is seen that the [H⁺] in blood is very small, about 4.0 X 10⁻⁸ M
 - Small changes in [H⁺] can have dramatic physiological effects
 - Many biological reactions depend on [H⁺]
 - An increase in [H⁺] from 4.0 X 10⁻⁸ to 4.0 X 10⁻⁷ can increase the a reaction rate by a power of 10
 - Small increases in [H⁺] can lead to *acidosis*; small decreases in [H⁺] can lead to *alkalosis*
 - Effective control of many physiological reactions depends on pH control

pH of Strong Acids

- Recall from Chapter 4 that some acids are strong
 - HCI, HBr, HI, HCIO₄, HNO₃, H₂SO₄
 - These completely ionize in water
 - $[H^+]$ is equal to the $[H^+]$ of the acid
 - A 0.10 M solution of HCl has [H⁺] = 0.10, so the pH of the solution is 1.0

pH of Strong Bases

- Recall as well that some bases are strong:
 - LiOH, NaOH, KOH, Ca(OH)₂, Sr(OH)₂, Ba(OH)₂
 - These bases ionize completely to OH⁻
 - pOH is dependent on the concentration of the strong base
 - For an 0.10 M solution of NaOH,
 - [Na⁺] = [OH⁻] = 0.10
 - pOH = 1.0
 - pH = 13.0

Example 13.1

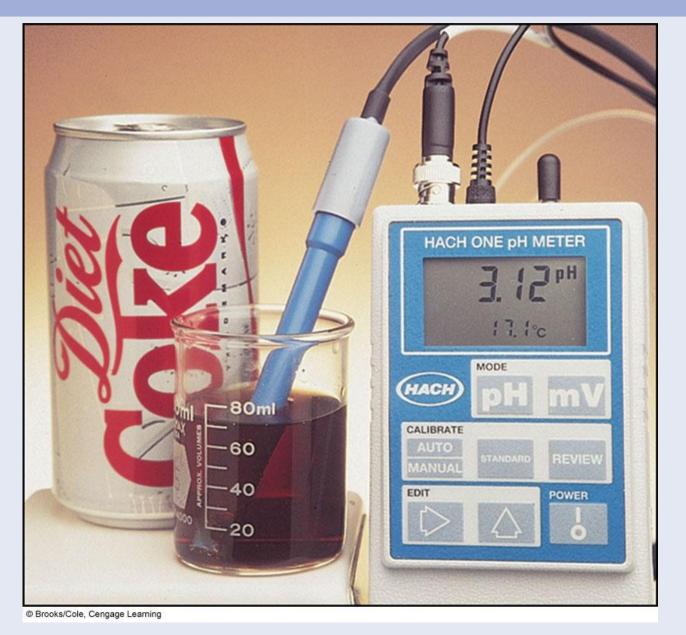
Example 13.1

- (a) What is the conjugate base of HNO_2 ? The conjugate acid of F^- ?
- (b) The HCO₃⁻ ion, like the H₂O molecule, is amphiprotic. What is its conjugate base? Its conjugate acid?

Strategy To form a conjugate base, remove H^+ ; the effect is to lower the number of hydrogen atoms by one and lower the charge by one unit. Conversely, a conjugate acid is formed by adding H^+ ; this adds a H atom and increases the charge by one unit.

SOLUTION

(a) NO_2^- ; HF (b) CO_3^{2-} ; H₂CO₃


Measuring pH

- pH can be measured with a pH meter
 - Translates [H⁺] into an electrical signal
 - Signal is shown on an analog or digital meter calibrated in pH units

pH Indicators

- Universal indicator
 - Mixture of substances that change color depending on the concentration of H⁺
 - Less accurate than pH meter
 - Depending on the indicator used, can display pH over a narrow or wide range of [H⁺]
- Some plants can act as pH indicators
 - Color of some flowers in plants is dependent on the pH of the soil in which the plant is grown

Figure 13.5

© Brooks/Cole, Cengage Learning

Figure 13.6

© Brooks/Cole, Cengage Learning

© Brooks/Cole, Cengage Learning

Weak Acid Equilibrium Constants

- Weak acids ionize only partially
- Prototype reaction
 - HB (aq) + $H_2O \Rightarrow H_3O^+$ (aq) + B^- (aq)
- Two types of species that behave as weak acids
 - 1. Molecules with an ionizable hydrogen atom
 - HNO_2 (aq) + $H_2O = H_3O^+$ (aq) + NO_2^- (aq)
 - 2. Cations
 - NH_4^+ (aq) + $H_2O \rightleftharpoons H_3O^+$ (aq) + NH_3 (aq)

Metal Cations as Acids

 Many metal cations act as weak acids in water solution as well

• $Zn(H_2O)_4^{2+}(aq) + H_2O = H_3O^+(aq) Zn(H_2O)_3(OH)^+(aq)$

- The bond that forms between the oxygen and the metal ion weakens the O-H bond
- H⁺ is more easily ionized as a result of the weakened bond

Equilibrium Constants for Weak Acids

- HB (aq) + $H_2O \acute{O} H_3O^+$ (aq) + B^- (aq)
 - K_a is the acid equilibrium constant
 - Simplifying the above to HB (aq) $\acute{\mathbf{O}}$ H⁺ (aq) + B⁻ (aq)

$$K_a = \frac{[H^+][B^-]}{[HB]}$$

- K_a values are related to the weak acid strength
 - The smaller K_a is, the weaker the acid is

Table 13.2

	Acid	Ka	Base	Kb
Sulfurous acid	H ₂ SO ₃	1.7 × 10 ⁻²	HSO ₃ -	5.9 × 10 ⁻¹³
Hydrogen sulfate ion	HSO4-	1.0×10^{-2}	S042-	1.0×10^{-12}
Phosphoric acid	H ₃ PO ₄	7.1×10^{-3}	H ₂ PO ₄ -	1.4×10^{-12}
Hexaaquairon(III) ion	Fe(H ₂ O) ₆ ³⁺	6.7×10^{-3}	Fe(H ₂ O) ₅ OH ²⁺	1.5×10^{-12}
Hydrofluoric acid	HF	6.9×10^{-4}	F-	1.4×10^{-11}
Nitrous acid	HNO ₂	6.0×10^{-4}	NO ₂ -	1.7×10^{-11}
Formic acid	HCHO ₂	1.9×10^{-4}	CHO ₂ -	$5.3 imes 10^{-11}$
Lactic acid	HC ₃ H ₅ O ₃	1.4×10^{-4}	C ₃ H ₅ O ₃ -	7.1×10^{-11}
Benzoic acid	HC7H5O2	6.6×10^{-5}	C7H502-	1.5×10^{-10}
Acetic acid	HC ₂ H ₃ O ₂	1.8×10^{-5}	$C_2H_3O_2^-$	$5.6 imes 10^{-10}$
Hexaaquaaluminum(III) ion	AI(H ₂ O) ₆ ³⁺	1.2×10^{-5}	AI(H ₂ O) ₅ OH ²⁺	8.3×10^{-10}
Carbonic acid	H ₂ CO ₃	4.4×10^{-7}	HCO ₃ -	2.3×10^{-8}
Dihydrogen phosphate ion	H ₂ PO ₄ -	6.2×10^{-8}	HPO42-	1.6×10^{-7}
Hydrogen sulfite ion	HSO ₃ −	6.0×10^{-8}	SO32-	1.7×10^{-7}
Hypochlorous acid	HCIO	2.8×10^{-8}	CIO-	3.6×10^{-7}
Hydrocyanic acid	HCN	5.8×10^{-10}	CN-	1.7×10^{-5}
Ammonium ion	NH4 ⁺	5.6×10^{-10}	NH ₃	1.8×10^{-5}
Tetraaquazinc(II) ion	Zn(H ₂ O) ₄ ²⁺	3.3×10^{-10}	Zn(H ₂ O) ₃ OH+	3.0×10^{-5}
Hydrogen carbonate ion	HCO ₃ -	4.7×10^{-11}	CO32-	2.1×10^{-4}
Hydrogen phosphate ion	HPO42-	4.5×10^{-13}	PO43-	2.2×10^{-2}
	HB(aq) ← H +(aq)	$+ B^{-}(aq) K_{a} =$	$\frac{[\mathrm{H^+}]\times[\mathrm{B^-}]}{[\mathrm{HB}]}$	

pK_{a}

- $pK_a = -logK_a$
- The smaller pK_a is, the stronger the acid
 - pK_a follows the trend for pH

Example 13.4

Example 13.4 Consider acetic acid, $HC_2H_3O_2$, and the hydrated zinc cation, $Zn(H_2O)_4^{2+}$.

- (a) Write equations to show why these species are acidic.
- (b) Which is the stronger acid?
- (c) What is the pK_a of $Zn(H_2O)_4^{2+}$?

Strategy In (a), note that in both cases a proton is transferred to a water molecule. The products are an H_3O^+ ion and the conjugate base of the weak acid. In (b) use Table 13.2 to find which weak acid has the larger K_a . In (c) use the equation

$$pK_a = -\log_{10}K_a$$

SOLUTION

- (a) $HC_2H_3O_2(aq) + H_2O \Longrightarrow H_3O^+(aq) + C_2H_3O_2^-(aq)$ $Zn(H_2O)_4^{2+}(aq) + H_2O \Longrightarrow H_3O^+(aq) + Zn(H_2O)_3(OH)^+(aq)$
- (b) $HC_2H_3O_2$ ($K_a = 1.8 \times 10^{-5}$) is stronger than $Zn(H_2O)_4^{2+}(K_a = 3.3 \times 10^{-10})$.

(c)
$$pK_a = -\log_{10}(3.3 \times 10^{-10}) = 9.48$$

Example 13.5

Example 13.5 Aspirin, a commonly used pain reliever, is a weak organic acid whose molecular formula may be written as $HC_9H_7O_4$. An aqueous solution of aspirin has total volume 350.0 mL and contains 1.26 g of aspirin. The pH of the solution is found to be 2.60. Calculate K_a for aspirin.

Strategy The approach used is very similar to that of Chapter 12, except that concentrations in moles per liter replace partial pressures. Note that you readily calculate:

• the original concentration of $HC_9H_7O_4$ (MM = 180.15 g/mol)

$$[\mathrm{HC}_{9}\mathrm{H}_{7}\mathrm{O}_{4}]_{\mathrm{o}} = \frac{1.26 \mathrm{g}}{0.3500 \mathrm{L}} \times \frac{1 \mathrm{mol}}{180.15 \mathrm{g}} = 0.0200 \mathrm{M}$$

■ the equilibrium concentration of H⁺

$$[\mathrm{H}^+]_{\mathrm{eq}} = 10^{-2.60} = 2.5 \times 10^{-3} M$$

Your task is to calculate the acid equilibrium constant:

$$HC_{9}H_{7}O_{4}(aq) \rightleftharpoons H^{+}(aq) + C_{9}H_{7}O_{4}^{-}(aq) \qquad K_{a} = \frac{[H^{+}] \times [C_{9}H_{7}O_{4}^{-}]}{[HC_{9}H_{7}O_{4}]}$$

Example 13.5, (Cont'd)

SOLUTION From the chemical equation for the ionization of the weak acid, it should be clear that $1 \mod \text{of } C_9H_7O_4^-$ is *produced* and $1 \mod \text{of } HC_9H_7O_4$ is *consumed* for every mole of H⁺ produced. It follows that

$$\Delta[\mathrm{C}_{9}\mathrm{H}_{7}\mathrm{O}_{4}^{-}] = \Delta[\mathrm{H}^{+}] \qquad \Delta[\mathrm{H}\mathrm{C}_{9}\mathrm{H}_{7}\mathrm{O}_{4}] = -\Delta[\mathrm{H}^{+}]$$

Originally, there is essentially no H⁺ (ignoring the slight ionization of water). The same holds for the anion $C_9H_7O_4^-$; the only species present originally is the weak acid, $HC_9H_7O_4$, at a concentration of 0.0200 *M*.

Putting this information together in the form of a table,

$HC_{9}H_{7}O_{4}(aq) \Longrightarrow H^{+}(aq) + C_{9}H_{7}O_{4}^{-}(aq)$						
0.0000	0.0000	0.0200	[]₀			
+0.0025	+0.0025	-0.0025	Δ[]			
0.0025	0.0025	0.0175	[] _{eq}			

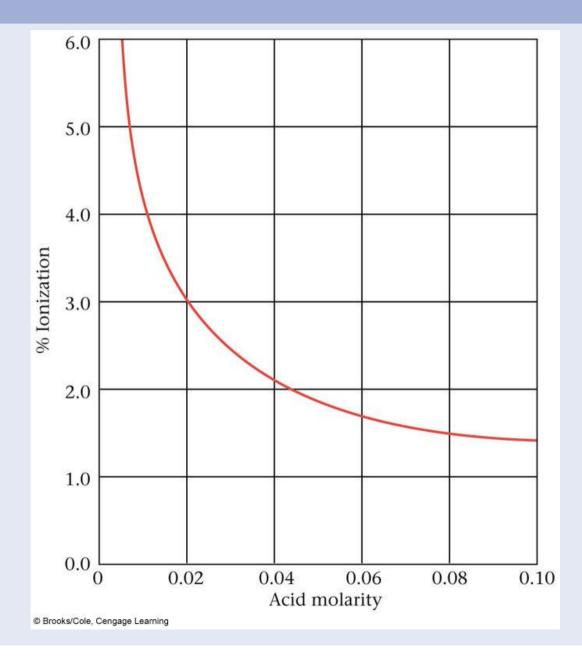
(Numbers in color are those given or implied in the statement of the problem; the other numbers are deduced using the ionization equation printed above the table. The symbols $[]_o$ and $[]_{eq}$ refer to original and equilibrium concentrations, respectively.)

All the information needed to calculate K_a is now available,

$$K_{\rm a} = \frac{(2.5 \times 10^{-3})^2}{0.0175} = 3.6 \times 10^{-4}$$

Reality Check Aspirin is a relatively *strong* weak acid; it would be located near the top of Table 13.2.

Percent Ionization

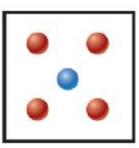


• The percent ionization of a weak acid is defined as

$$\% ionization = \frac{[H^+]_{equilibrium}}{[HB]_{initial}} \times 100\%$$

- For the calculation in example 13.5, the percent ionization is about 12 %
 - Note that the percent ionization depends on the molarity of the weak acid

Figure 13.8 - % Ionization and Concentration



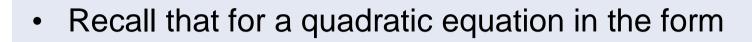
Example 13.6

Example 13.6 Conceptual

In the box below, which has a volume of 0.50 L, the symbol **()** represents 0.10 mol of a weak acid, HB. The symbol **()** represents 0.10 mol of the conjugate base, B⁻. Hydronium ions and water molecules are not shown. What is the percent ionization of the acid?

SOLUTION There must, originally, have been five red circles. So,

```
% ionization = \frac{1}{5} \times 100 = 20\%
```


The other information given in the statement of the problem is irrelevant.

Calculating [H⁺] in a Water Solution of a Weak Acid

- We can use the process for calculating equilibrium pressure for gaseous reactions that we looked at in Chapter 12 to calculate the equilibrium concentration of [H⁺] for a weak acid
- The relationship between [HB], [H⁺] and [B⁻] is given in the equilibrium expression itself

Algebra Review – Quadratic Equations

$$ax^2 + bx + c = 0$$

• The roots are

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Example 13.7

Example 13.7 Nicotinic acid, $HC_6H_4O_2N$ ($K_a = 1.4 \times 10^{-5}$) is another name for niacin, an important member of the vitamin B group. Determine [H⁺] in a solution prepared by dissolving 3.0 g of nicotinic acid (MM = 123.11 g/mol), HNic, in enough water to form 245 mL of solution.

Strategy First, determine the molarity of the prepared solution:

 $\frac{3.0 \text{ g HNic}}{0.245 \text{ L}} \times \frac{1 \text{ mol}}{123.11 \text{ g}} = 0.10 M$

Next, set up an equilibrium table similar to the one in the previous example. To accomplish that, note

- the original concentrations of HNic, H⁺, and Nic⁻ are 0.10 *M*, 0.00 *M*, and 0.00 *M*, respectively, ignoring, tentatively at least, the H⁺ ions from the ionization of water.
- the changes in concentration are related by the coefficients of the balanced equation, all of which are 1:

 Δ [Nic⁻] = Δ [H⁺] Δ [HNic] = $-\Delta$ [H⁺]

Letting $\Delta[H^+] = x$, it follows that $\Delta[Nic^-] = x$; $\Delta[HNic] = -x$. This information should enable you to express the equilibrium concentration of all species in terms of x. The rest is algebra; substitute into the expression for K_a and solve for $x = [H^+]$.

Example 13.7, (Cont'd)

SOLUTION Setting up the table,

	$HNic(aq) \Longrightarrow H^+(aq) + Nic^-(aq)$				
[]。	0.10	0.00	0.00		
Δ[]	- <i>x</i>	+x	+x		
[] _{eq}	0.10 <i>- x</i>	Х	X		

Substituting into the expression for K_a ,

$$K_{\rm a} = \frac{(x)(x)}{0.10 - x} = 1.4 \times 10^{-5}$$

This is a quadratic equation. It could be rearranged to the form $ax^2 + bx + c = 0$ and solved for *x*, using the quadratic formula. Such a procedure is time-consuming and, in this case, unnecessary. Nicotinic acid is a weak acid, only slightly ionized in water. The equilibrium concentration of HNic, 0.10 - x, is probably only very slightly less than its original concentration, 0.10 M. So let's make the approximation $0.10 - x \approx 0.10$. This simplifies the equation written above:

$$\frac{x^2}{1.4 \times 10^{-5}}$$

Approximations Used in Calculations

- The value of K_a is usually known no more accurately than about $\pm 5\%$
- When solving for the unknowns used to work the equilibrium problem, for the expression
- Where a is the initial concentration of weak acid, you can neglect x in the denominator if doing so does not introduce an error of more than 5%, i.e.,

$$K_a = \frac{x^2}{a - x}$$

if
$$\frac{x}{a} \le 0.05$$
, then

$$a - x \approx a$$

Approximations and Percent Ionization

When

$$\frac{x}{a} = \frac{[H^+]_{eq}}{[HB]_o}$$

• Multiplying by 100% will give the percent ionization:

$$\frac{x}{a}\% = \frac{[H^+]_{eq}}{[HB]_o} \times 100\%$$

- If the percent ionization is 5% or less, you may make the approximation.
- If the percent ionization is greater than 5%, the quadratic formula or the successive approximation method is required

Example 13.8

Example 13.8 Calculate [H⁺] in a 0.100 *M* solution of nitrous acid, HNO₂, for which $K_a = 6.0 \times 10^{-4}$.

Strategy The setup is identical with that in Example 13.7. However, you will find, on solving for *x*, that x > 0.050a, so the approximation $a - x \approx a$ fails. The simplest way to proceed is to use the calculated value of *x* to obtain a better estimate of [HNO₂], then solve again for [H⁺]. An alternative is to use the quadratic formula. (This is a particularly shrewd choice if you have a calculator that can be programmed to solve quadratic equations.)

SOLUTION Proceeding as in Example 13.7, you arrive at the equation

$$K_{\rm a} = \frac{x^2}{0.100 - x} = 6.0 \times 10^{-4}$$

Making the same approximation as before, $0.100 - x \approx 0.100$,

$$x^2 = 0.100 \times 6.0 \times 10^{-4} = 6.0 \times 10^{-5}$$

 $x = 7.7 \times 10^{-3} \approx [\text{H}^+]$

To check the validity of the approximation, note that

Example 13.8, (Cont'd)

value of *x* just calculated, 0.0077, to find a more exact value for the concentration of HNO₂:

$$[HNO_2] = 0.100 - 0.0077 = 0.092 M$$

Substituting in the expression for K_a ,

$$K_{a} = \frac{x^{2}}{0.092} = 6.0 \times 10^{-4} \qquad x^{2} = 5.5 \times 10^{-5}$$
$$x = 7.4 \times 10^{-3} M \approx [\text{H}^{+}]$$

This value is closer to the true [H⁺], because 0.092 *M* is a better approximation for [HNO₂] than was 0.100 *M*. If you're still not satisfied, you can go one step further. Using 7.4×10^{-3} for *x* instead of 7.7×10^{-3} , you can recalculate [HNO₂] and solve again for *x*. If you do, you will find that your answer does not change. In other words, you have gone about as far as you can go.

Example 13.8, (Cont'd)

(2) *The quadratic formula.* This gives an exact solution for *x* but is more time-consuming. Rewrite the equation

$$\frac{x^2}{0.100 - x} = 6.0 \times 10^{-4}$$

in the form $ax^2 + bx + c = 0$. Doing this,

 $x^2 + (6.0 \times 10^{-4})x - (6.0 \times 10^{-5}) = 0$

thus a = 1; $b = 6.0 \times 10^{-4}$; $c = -6.0 \times 10^{-5}$. Applying the quadratic formula,

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
$$= \frac{-6.0 \times 10^{-4} \pm \sqrt{(6.0 \times 10^{-4})^2 + (24.0 \times 10^{-5})}}{2}$$

If you carry out the arithmetic properly, you should get two answers for *x*:

 $x = 7.4 \times 10^{-3} M$ and $-8.0 \times 10^{-3} M$

The second answer is physically ridiculous; the concentration of H⁺ cannot be a negative quantity. The first answer is the same one obtained by the method of successive

Polyprotic Weak Acids

- Acids containing more than one ionizable hydrogen are called polyprotic
 - The anion formed in one step produces another H⁺ in a successive ionization step
 - The equilibrium constant becomes smaller with each successive step

Triprotic Acid

- Phosphoric acid
 - H_3PO_4 (aq) \Rightarrow H^+ (aq) + $H_2PO_4^-$ (aq) K_{a1}
 - $H_2PO_4^{-}(aq) = H^+(aq) + HPO_4^{2-}(aq)K_{a2}$
 - $HPO_4^{2-}(aq) \rightleftharpoons H^+(aq) + PO_4^{3-}(aq)$ K_{a3}
 - $K_{a1} > K_{a2} > K_{a3}$
 - With each successive step, the acid becomes progressively weaker

able 13.	3				
_					
Table 13.3 Equilibrium Constants for Some Weak Polyprotic Acids at 25°C					
Acid	Formula	K _{a1}	K _{a2}	K _{a3}	
Carbonic acid*	H ₂ CO ₃	$4.4 imes 10^{-7}$	4.7×10^{-11}		
Oxalic acid	$H_2C_2O_4$	$5.9 imes 10^{-2}$	$5.2 imes 10^{-5}$		
Phosphoric acid	H ₃ PO ₄	$7.1 imes 10^{-3}$	$6.2 imes 10^{-8}$	$4.5 imes 10^{-1}$	
Sulfurous acid	H ₂ SO ₃	1.7×10^{-2}	$6.0 imes 10^{-8}$		

*Carbonic acid is a water solution of carbon dioxide:

 $CO_2(g) + H_2O \Longrightarrow H_2CO_3(aq)$

The ionization constants listed are calculated assuming that all the carbon dioxide that dissolves is in the form of H₂CO₃.

© Brooks/Cole, Cengage Learning

Example 13.9

Example 13.9 The distilled water you use in the laboratory is slightly acidic because of dissolved CO_2 , which reacts to form carbonic acid, H_2CO_3 . Calculate the pH of a 0.0010 *M* solution of H_2CO_3 .

Strategy In principle, there are two different sources of H^+ ions from H_2CO_3 :

$$H_2CO_3(aq) \rightleftharpoons H^+(aq) + HCO_3^-(aq) \qquad K_{a1} = 4.4 \times 10^{-7}$$
$$HCO_3^-(aq) \rightleftharpoons H^+(aq) + CO_3^{2-}(aq) \qquad K_{a2} = 4.7 \times 10^{-11}$$

In practice, essentially all the H⁺ ions come from the first reaction, because K_{a1} is so much larger than K_{a2} . In other words, H₂CO₃ can be treated as if it were a weak monoprotic acid.

SOLUTION For the first reaction, $H_2CO_3(aq) \Longrightarrow H^+(aq) + HCO_3^-(aq)$

$$K_{a1} = \frac{x^2}{0.0010 - x} = 4.4 \times 10^{-7}$$
 $(x = [H^+] = [HCO_3^-])$

Making the approximation $0.0010 - x \approx 0.0010$ and solving gives

$$x = (4.4 \times 10^{-10})^{1/2} = 2.1 \times 10^{-5}$$

pH = -log₁₀(2.1 × 10⁻⁵) = 4.68

Note that the solution is indeed acidic, with a pH considerably less than 7. Notice that since

$$[\mathrm{H^+}] = [\mathrm{HCO_3^-}]$$
 and $\frac{[\mathrm{H^+}] \times [\mathrm{CO_3^{2^-}}]}{[\mathrm{HCO_3^-}]} = K_{\mathrm{a2}} = 4.7 \times 10^{-11}$

it follows that $[CO_3^{2-}] = K_{a2} = 4.7 \times 10^{-11}$.

Weak Bases and their Equilibrium Constants

- Types of weak bases
 - Molecules
 - Ammonia, NH_3 , and amines
 - NH_3 (aq) + $H_2O \rightleftharpoons NH_4^+$ (aq) + OH^- (aq)
 - Anions
 - Anions derived from weak acids are weak bases
 - I⁻ (aq) + H₂O \rightleftharpoons HI (aq) + OH⁻ (aq)

Example 13.10

Example 13.10 Write an equation to explain why each of the following produces a basic water solution.

(a) NO_2^- (b) Na_2CO_3 (c) $KHCO_3$

Strategy In each case, the anion reacts reversibly with a water molecule, picking up a proton from it. Two species are formed: the OH⁻ ion and the conjugate acid of the anion.

SOLUTION

- (a) $NO_2^-(aq) + H_2O \Longrightarrow HNO_2(aq) + OH^-(aq)$
- (b) $\text{CO}_3^{2-}(aq) + \text{H}_2\text{O} \Longrightarrow \text{HCO}_3^{-}(aq) + \text{OH}^{-}(aq)$
- (c) $HCO_3^-(aq) + H_2O \Longrightarrow H_2CO_3(aq) + OH^-(aq)$

Weak Base Equilibrium Constant

- $NH_3(aq) + H_2O \acute{O} NH_4^+(aq) + OH^-(aq)$
 - The **base equilibrium constant**, K_b is

$$K_{b} = \frac{[NH_{4}^{+}][OH^{-}]}{[NH_{3}]}$$

- For a generic weak base where
 - $B(aq) + H_2O \circ HB^+(aq) + OH^-(aq)$

$$K_{b} = \frac{[HB^{+}][OH^{-}]}{[B]}$$

K_b by the Numbers

- As K_b becomes larger, base strength increases
- As with acids and K_a , we can define a pK_b :
 - $pK_b = -logK_b$
 - As pK_b becomes smaller, base strength increases

Calculation of [OH-] in a Weak Base Solution

 The process of calculating the [OH⁻] in a weak base solution is the same as the process for calculating [H⁺] in a weak acid solution

Example 13.11

Example 13.11

Graded

Consider sodium hypochlorite, NaOCl, the main component in household bleach. The hypochlorite ion, OCl⁻, has $K_b = 3.6 \times 10^{-7}$. A solution is prepared by dissolving 12.0 g of NaOCl (MM = 74.45 g/mol) in enough water to make 835 mL of solution.

- *(a) What is the pH of the solution?
- ******(b) Household bleach is 5.25% NaOCl by mass. Assuming that its density is 1.00 g/mL, is household bleach more alkaline than the prepared solution?

Strategy

- (a) The procedure is entirely analogous to that in Example 13.7. Take $[OH^-] = x$ and set up an equilibrium table, ignoring OH^- ions present in pure water. Solve for x, making the usual approximation. Then calculate pOH and finally the pH. You should obtain a pH greater than 7.
- (b) Assume 100.0 g of solution, and determine [NaOCl], which is the same as [OCl⁻]. Follow the strategy above for (a), and compare the two pH values obtained.

Example 13.11, (Cont'd)

SOLUTION

(a) First, we obtain [NaOCl], which is equal to [OCl⁻]:

$$[\text{NaOCl}] = \frac{12.0 \text{ g}}{0.835 \text{ L}} \times \frac{1 \text{ mol}}{74.45 \text{ g}} = 0.193 M$$

The equilibrium table is

	$OCI^{-}(aq) + H_2O \Longrightarrow HOCI(aq) + OH^{-}(aq)$			
[]₀	0.193	0.00	0.00	
Δ []	-x	+x	+x	
[] _{eq}	0.193 <i>- x</i>	X	X	

Substituting into the equilibrium-constant expression, we find

$$K_{\rm b} = \frac{x^2}{0.193 - x} = 3.6 \times 10^{-7}$$

Assuming $0.193 - x \approx 0.193$ and solving for *x*,

Example 13.11, (Cont'd)

Since the % ionization,

$$\left(\frac{2.6 \times 10^{-4}}{0.193}\right) \times 100 = 0.14\% < 5.00\%,$$

the approximation is justified.

$$[OH^{-}] = 2.6 \times 10^{-4}$$

pOH = $-\log_{10} 2.6 \times 10^{-4} = 3.59$
pH = 14.00 - 3.59 = 10.41

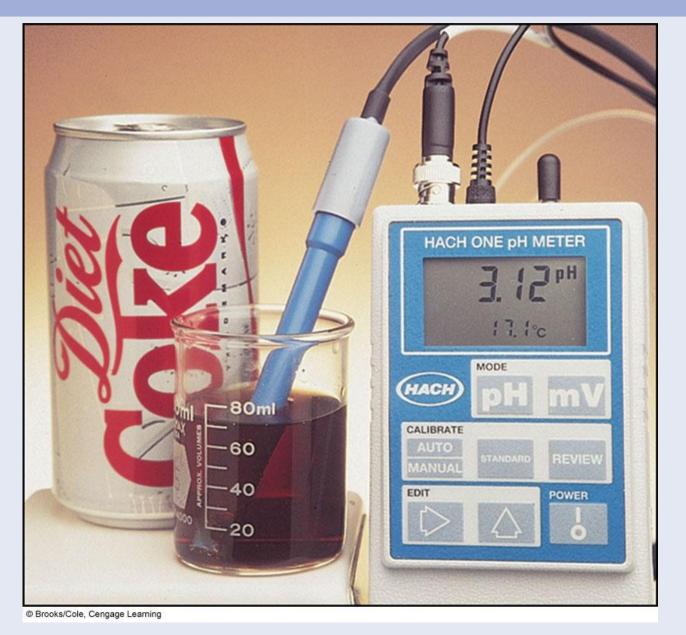
(b) If we assume 100.0 g of solution, then we can say that there are 5.25 g NaOCl in 100.0 mL of solution (since density is assumed to be 1.00 g/mL). Thus,

$$[\text{NaOCl}] = [\text{OCl}^-] = \frac{5.25 \text{ g}}{0.100 \text{ L}} \times \frac{1 \text{ mol}}{74.4 \text{ g}} = 0.706 M$$

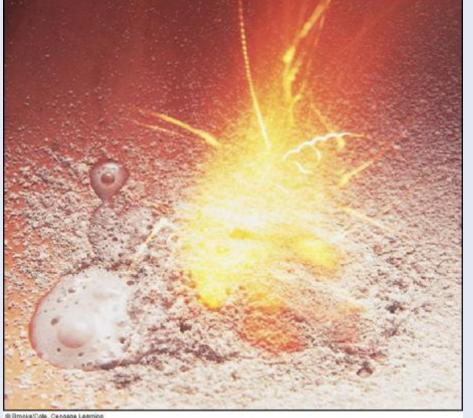
Substituting into an equilibrium table (as in part (a)), we should get

$$K_{\rm b} = \frac{x^2}{0.706 - x} = 3.6 \times 10^{-7}$$

Again assuming $0.706 - x \approx 0.706$ and solving for x, we obtain


Relation between K_a and K_b

- Consider the relation between a conjugate acid-base pair
 - HB (aq) \Rightarrow H⁺ (aq) + B⁻ (aq) $K_I = K_a$ of HB
 - $B^{-}(aq) + H_2O \rightleftharpoons HB(aq) + OH^{-}(aq) K_{II} = K_b \text{ of } B^{-}$
- These add to
 - $H_2O \rightleftharpoons H^+(aq) + OH^-(aq)$ $K_{III} = K_w$
- Since $K_I K_{II} = K_{III}$, $K_a K_b = K_w$
 - for a conjugate acid base pair only
 - In log form, $pK_a + pK_b = pK_w = 14$


Notes on Acid-Base Strength

- K_a and K_b are inversely related
 - The larger K_a is, the smaller K_b is
- Features
 - Brønsted-Lowry acids
 - Strong acids
 - Weak acids
 - Acids weaker than water (conjugates of strong bases)
 - Brønsted-Lowry bases
 - Strong bases
 - Weak bases
 - Bases weaker than water (conjugates of strong acids)

Hydride ion

- Reaction of water with CaH₂
 - H⁻ is the conjugate base of H_2 , a very weak acid
 - As a result, H⁻ is an extremely strong base

Brocks/Cole, Cengage Learning

Acid-Base Properties of Solutions of Salts

- A salt is an ionic solid containing a cation other than H⁺ and an anion other than OH⁻
- We can predict whether a salt will be acidic, basic or neutral by
 - 1. Deciding what effect the cation has on water
 - Is it acidic or is it neutral?
 - 2. Deciding what effect the anion has on water
 - Is it basic or is it neutral?
 - 3. Combining the two effects to decide the behavior of the salt in water

Cations

- Weak acid or spectator ion?
 - Most cations are acidic
 - These will change the pH by more than 0.5 pH units in a 0.1 M solution
 - Exceptions these are spectators
 - Alkali metal cations
 - Heavier alkaline earth cations (Ca²⁺, Sr²⁺, Ba²⁺)

Anions

- Weak base or spectator ion?
 - Many anions are weak bases
 - These will change the pH by more than 0.5 pH units at 0.1 M
 - Exceptions these are spectators
 - Anions of very strong acids: Cl⁻, Br⁻, l⁻, NO₃⁻, ClO₄⁻

Sodium Chloride Solution

© Brooks/Cole, Cengage Learning

	_				
Table 13	.5 Acid	-Base Prope	rties of lons*	in Water So	olution
	Spe	ctator	Bas	sic	Acidic
	CI-	NO ₃ -	$C_2H_3O_2^{-1}$	CO3 ²⁻	
Anion	Br-	CIO ₄ -	F-	PO4 ³⁻	
	1-		Many others		
					NH4 ⁺ Al ³
	Li+	Ca ²⁺			NH ₄ ⁺ Al ³
Cation	Li+ Na+	Ca ²⁺ Sr ²⁺			Mg ²⁺

*For the acid-base properties of amphiprotic anions such as HCO₃⁻ or H₂PO₄⁻, see the discussion at the end of this section. © Brooks/Cole, Cengage Learning

Salts: Acidic, Basic or Neutral

- By comparing the K_a of an acidic cation with the K_b of a basic anion, the salt of both can be classified as acidic, basic or neutral
 - If $K_a > K_b$, the salt is acidic
 - NH₄F, K_a = 5.6 X 10⁻¹⁰; K_b = 1.4 X 10⁻¹¹
 - If $K_b > K_a$, the salt is basic
 - NH₄ClO, K_a = 5.6 X 10⁻¹⁰; K_b = 3.6 X 10⁻⁷

Amphiprotic Anions

- HCO₃-
 - $K_a = 4.7 \times 10^{-11}$
 - $K_b = 2.3 \times 10^{-8}$
- Because $K_b > K_a$, a solution of NaHCO₃ will be basic

Key Concepts

- 1. Classify a substance as a Brønsted-Lowry acid or base and write the net ionic equation to support the classification
- 2. Given [H⁺], [OH⁻], pH or pOH, calculate the three other quantities
- 3. Given the pH and original concentration of a weak acid, calculate K_a
- 4. Given the K_a and original concentration of a weak acid, calculate [H⁺]
- 5. Given the K_b and original concentration of a weak base, calculate [OH⁻]

Key Concepts, (Cont'd)

- 6. Given K_a for a weak acid, calculate K_b for its conjugate base (or vice-versa).
- 7. Predict whether a salt will be acidic, basic or neutral.